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SUMMARY

Analytical solutions for displacements and stresses in 'composite laminates are developed using the laminate
plate theory of Reddy. The theory accounts for a desired degree of approximation of the displacements
through the laminate thickness, allowing for, piecewise approximation of the inplane deformation through
individual laminae. The solutions are compared with the 3-D elasticity solutions for the simply supported
case and excellent agreement is found. Analytical solutions are also presented for other boundary condition's.
The results indicate that the generalized shear deformation plate theory predicts accurate stress distributions
in thick composite laminates.' ,

INTRODUCTION

Among the displacement-based refined theories tha~ are available in the literature the first one is
due to Basset. 1 Basset assumed that the, three displacement components in a shell can be expanded
as a linear combination of the thickness co-ordinate and un~nown functions of positiC?n in the
reference surface of the plate. The Basset type displacement'expansions were used by Hildebrand
et al.,2 Hencky,3 Mindlin4 and -recently by Reddys -7 to 'develop yarious first-order and higher­
order plate theories. An nth-order 'theory is one in which the ~isplacements (often, the inplane
displacements) are expanded in terms of the thickness co-ordinate up to the nth power. The
equations of equilibrfuln or motion are derived often using the principle of virtual displacements.
Most of the refined theories do not require va,nishing of the transverse shear stresses on the
bounding planes of the plate. The third-order theory advanced by Reddys - 7 satisfies the traction
free boundary conditions on the top .and. bottom faces of a laminate composite of orthotropic
layers.

All laminate plate theories derived from the Basset type expansion assume that the displace­
ments vary through the thickness of the' laminate according to a single expression, notallowingfor
possible discontinuities in the slopes of the deflections at the interfaces of two individual laminae.
Recently, Reddy8 presented a laminate plate theory that allows piecewise representation of
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(1)

displacements through individual laminae of a laminated plate. The theory was extended to
include the von Karman non-linearity by Reddy and Barbero.9 Similar, but different, theories
have appeared in the literature (see References 10-13). The present study deals with the analytical
solutions to the general laminate theory presented in Reference· 8, and an evaluation of the
accuracy of the stresses predicted by the theory in light of the 3-D elasticity results. The
development of analytical solutions to the layer-wise displacement theory is by no means simple,
especially for boundary conditions other than simply supported. Although the basic theory was
presented in Reference 8, its solutions, hence the accuracy, have not been investigated previously.
The present work is in the same spirit as the works of ,Pa.gano,14, 15 who presented analytical
solutions of the well-known first-order shear deformation theory to investigate shear deformation
effects in composite laminates.

THEORETICAL FORMULATION

Consider a laminated plate composed of N orthotropic laminae, each being oriented arbitrarily
with respect to the laminate (x, y) co-ordinates, which are taken to be in the midplane of the
laminate. The displacements (u 1 , U2' U3) at a generic point (x, y, z) in the laminate are assumed to
be of the form (see Reference 8),

u1 (x, y, z) = u(x, y) + U(x, y, z)

U2 (x, y, z) = v(x, y) + V(x, y, z)

U3(X, y, z)= w(x, y)

where (u, v, w) are the displacements of a point (x, y, 0) on the reference'plane of the laminate, and
U and V are functions which vanish on the· reference· plane:

V(x, y, 0)= V(x, y,O)=O (2)

Although the displacement comp,onent U3 is assumed to be constant through laminate thickness
in the present study, it is not a restriction of the GLPT as developed in Reference 8. T~e constant
state of U 3 thr9ugh the thickness is justified in view of the relatively small magnitudes of the
transverse normal, stress cOlllpared to the other stress components, and the assumption is used
extensively in most refined plate theories.

In order to reduce the .three-dimensional theory to a two-dimensional one, Reddy8 suggested
that the out-of-plane displacement functions be expanded as a linear combination of un­
determined functions of (x, y) and known functions of z:

n

V(x,y,z)= L Uj(x,y)<I>j(z)
j= 1

n

V(x,y,z)= L Vj(x,y)<I>j(Z)
j=l

(3)

where Vi and Vi are undetermined coefficients and <l>j are any continuous functions that satisfy
the condition

<l>j(O) = 0 for all j= 1,2, ... , n (4)

The approximation in equation (3) can also be viewed as the global semi-discrete finite-element
approximations (see Reference 16) of U and V through the thickness. In that case <I> j denote the
global interpolation functions, and V j and vj are the global nodal values of U and V (and possibly
their derivatives) at the nodes through the thickness of the laminate. For example, a finite-element
approximation based on the Lagrangian interpolation through the thickness can be obtained
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from equation (3) by setting n = pN + 1, where

N = number of layers through thickness

p = degree of the global interpolation polynomials, <l>j(z), and

U j, vj~ global nodal values of U and V.

For p = 1 (i.e. linear interpolation), we have

VI = ull), U 2 = U~I) = u12), ••• , Uk = U~k-.1) = Ulk )

VI = V1I ), V2 = v~1) = V\2), ••• , V k = V~k-I) = vlk)

where U)k) ,for example, denotes the value of U at the jth node of. the kth lamina. The linear global
interpolation functions are given by

t/J~k-1)(Z), Zk-I ~ Z ~ Zk
<l>k(Z) = ,JI(k)( ")' ' ' (k = 1, 2, ... , N) (6)

'Y I Z, Zk ~ Z ~' Zk + I

where t/J)k) (j = 1, 2) is the local (i.e. layer) Lagrange interpolation function associated with the jth
node of the kth layer. If the mid-plane does not coincide with an interface, it is used as an interface
to satisfy equation (2). If U j, vj correspond to the midplane interface, equation (2) is satisfied by
setting U j and V j = O. Therefore n red'uces to n =N. '

The equilibrium equa~ions of the theory can be derived using the principle of virtual
displacements (see Reference 8):

where

Nx,x + Nxy,y = 0, Nxy,x + Ny,y = 0

Qx, x+ Qy, y +f = 0

N~,x+ N~y,y - Q~ = 0, N~y,x + N~,y --Q~=O, U= 1, 2, ... , n)

(7)

(8)

(Nx' Ny, N Xy) = fh/2 (0"x' O"y, O"xy)dz
-h/2

(Qx, Qy)= fh/2 (O"xz,O"yz)dz
-h/2

(N~, N~, N~y)= fh/2 (O"x, O"y, O"Xy)<I>iz)dz
-h/2

. . fh/2 d<l>· .
(Q~, Q~)= (O"xz' (jyz)-d) (z)dz
. -h/2 Z

(0"x' 0"" (Jxy' (jxz' (jyz) are the stresses and f is the distributed transverse load.
There are 2n + 1 differential equations in (2n + 1) variables (u, v, w, U i, Vi). The form of the

geometric and force boundary conditions' is given below:

Geometric (Essential)

U

v

Force (Natural)

Nxnx + Nxy+ny

Nxynx+Nyny

Qxnx + Qyny

N~.nx + N~yny

N~,nx + N~ny

(9)
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where (nx , ny ) denote the direction cosines of a unit normal to the boundary of the midplane Q.

The constitutive equations of the laminate are given by
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where

for all i, j = I, 2, ... , n.
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N fZk+ 1 ,

Apq = Jl JZk Q~~ dz (p, q= 1,2, 6; 4, 5)

- N iZk+ 1

B~q= 'L Q~~<I>idz (p,q=I,2,6)
k= 1 Zk

N iZk+ 1

D~q= L Q~~<I>i<l>idz (p,q=I,2,6)
k= 1 Zk

N iZk
+ 1 d<bi

B~q= L Q~~.-ddz (p, q=4, 5)
k = 1 Zk ,Z

N iZk
+ 1 ' d<l>i d<l>i

D~q= L '. Q~J-d '-d dz (p,q=4,5)
k= 1 Zk Z Z.

ANALYTICAL SOLUTIONS

5

(lOb)

(11 )

In this study We use a finite-element approximation based on the linear Lagrangian interpolation
through the thickness. In order to satisfy the conditions (2), we choose the midplane as an interface
and set U (x, y, 0) = V(x, y, 0) = O. A convenient way to accomplish this is to eliminate the variables
Ui and Vi at the midplane; therefore the number ofnecessary terms in (3) reduces to n = N, the
number of layers.

The coefficients Apq have the same meaning as in the classical plate theory (CPT). The
calculation of the coefficients B~q involves only the properties of the layers adjacent to the jth
interface because the functions <I>i are identically zero at other interfaces. The same is true for the
coefficients D~q.

Since the approximation through the thickness is built with a finite-element family of functions,
a standard, one-dimensional finite-element procedure can be used to perform the integration. This
makes the procedure very general with respect to the number of layers, thicknesses and properties
that can be handled. The contribution ofeach layer to its adjacentn,odes (located on the interfaces)
is then assembled in the usual way (see ReddyI6). The [Bi] array has an entry for each interface.
The array [Dii

] is equivalent to the mass matrix, and has a halfbandwidthof 2.
Here we consider analytical solutions for the case of cylindrical bending of a plate strip under

various ,boundary conditions and for simply supported cross-ply plates.

Cylindrical bending

The plate equations (7) can be specialized to cylindrical bending by taking v= 0, Vi = 0, U = u(x),
Vi = Ui(x), w=w(x). The equivalent equations can be written as

du2 N d2 Uk d2 w N dU k

All d 2 + L B~ 1 -d2 = 0 A 5 5 -d2 + LB~ 5 -d + f = 0
X k= 1 X X k X

. d
2
U . dw ~ [ 'k d

2
V k 'k kJB{l-d -B~5-d+ ~ D{I-d2 -D~5U =0

X X k=l X

Equations (11) consist ofN +2 equations in u, w, U 1, U 2
, ••• , V N unknowns, where N denotes the

number of layers.
We consider the case of N = 2 to illustrate the solution by the state-space procedure. 1

7 First we
transform the system of equations (11) to a system of first-order ordinary differential equations.
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Introducing the unknowns Xi through the relations

(12)

we obtain a system of ordinary differential equations from equation (11),

{ex'} = [A] {ex} + {F}
where

(13a)

1

o
o
o

[A] = 0

o
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o

o 0

o 1

o 0

o 0
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o· 0

B~l 0
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o
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o
o

A 55
o
o
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o 0 O' 0
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(13b)

[B]=

010 0

000 1
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(13c)

As a particular example, we consider a plate strip made of an isotropic material (E = 30
x 106 psi, E/G = 2·5, h=2 in) in cylindrical bending. A uniformly distributed transverse load of
intensity fo is used. For this case [A] becomes

[A]=

o tOO

o 0 0 0

o 0 0 1

o 0 0 0

o 0 0 0

o 0 0 -6/5

o 0 0 0

o 0 0 6/5

o
-6/5

o
o
o
3

o
9/5

o
o
o

1/2

1

o
o
o

o
-6/5

o
o
o

9/5

o
3

o
o
o

-1/2

o
o
t

o

{F} =

o
o
o

-.fo/24

o
o

I 0

l 0

(14)
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(15)

The eigenvalues of the matrix' [A] are

Al = A2 = A3 = A4 = As = A6 = 0

A7 ~ 2·19

As = - A7

·For this case we have only four linearly independent eigenvectors. For the eigenvalue A=O theeigenvector is of the form

{eI} = { k I , 0, k2' 0, 0, 0, 0, 0}T

To obtain other linearly. independent solutions, we use the solution procedure presented byGoldbery and Schwartz. I 7 First we set

(A - AI){e2} = {ell
and find that A= 0, and therefore

This yields

{e2} = {k3, k 1 , k4 , k2, k2, 0, -k2, O}T
Next we set [A] {e3} = {e2} and find

{~3} = {ks, k3 , k6 , k4 , k4 , k2, -k4 , -k2}T and k 1 = 0
which annihilates one of the eigenvectors.

Repeating the procedure, we obtain

{~4} = {k7 , ks, ks, k6 , ~(k2 + !k6 ), k4 , - ~(k2 + !k6 ), -k4}T, k3 = 0
{~s} = {k7 , ks, ks, k6 , - S41 (5k 2 + 6k6 ), k4 , S41 (5k 2 + 6k6 ), -k4 }T

Lastly, we set [X] {e6} = {~s}, and arrive at the condition k2= 0, which annihilates the onlyeigenvector left, so the process is terminated. The particular solution of the problem is

{tXp(x)} = f: [¢(x-s)o cP -1 (0)]- {F(s)} ds
where

0 1 0 x 0 0

0 0 0 1 0 0

1 0 x 0 x2/2 x3/6
0 0 1 0 x x2/2

{e7}eA7X
{~s }eA8X</J(x) =

0 0 1 0 5/6+x2/2x

0 0 0 0 x
0 0 -1 0 -x -5/6-x2/2
0 0 0 0 -1 -x

The general solution is given by

{ct(x)} = </J(x)· {k} + {ctp(x)}

(16)

(17)

(18)
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where {k} is the vector of constants, which can be found using the boundary conditions. For
example, for a clamped-clamped case the boundary conditions at x = ±a/2 are

u( - a/2) =u(a/2) = 0

w(-a/2)=w(a/2) == 0

U 1 ( ~ a/2) == U 1 (a/2) = 0

U 2 (-a/2)== U 2 (a/2) ==0

which give us eight equations to compute the eight .constants i~ the vector {k}.
For the particular choice of a == 20 in and uniformly distributed load of intensity10 = lib/in, the

solution is given by

(19)

Plots of the transverse deflection was a function of the thickness ratio a/h are shown in Figure 1
for three types of boundary conditions: cantilever, simply supported and clamped at both ends.
For all cases a uniformly· distributed load is used. Values for the exact 3-D sohition14 for the
simply supported case are also shown. The deflections are normalized with respect to the CPT
solution. The present solution is in excellent agreement with the 3-D elasticity solution. We note
that the clamped plate exhibits. more shear deformation.

Similar results are presented in Figure 2 for a two.~layer cross-ply [0° /90] plate strip. The
material properties of a ply are taken to be those of a graphite-epoxy material:

E1 == 19·2 X 106 psi

E2 == 1·56 x 106 psi

G12 = G13 == 0·82 X 106 psi

G23 = 0.523 X 106 psi

V 12 == V 13 == 0·24

V23 == 0·49

Once again, it is clear that the present theory yields very accurate results.

(20)

Simply supported plates

Consider a rectangular (a x b) cross-ply laminate, not necessarily symmetric, composed of N
layers. For such a plate the laminate constitutive equations (10) simplify because A 16 == A 26 = A 45
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= B~6 = B~6 = B~s = D{'(, = D~'6 = D{kS = O. The governing equations become

All U,xx + A l2 V,yx + A66 (u,yy + V,Xy)
N

+ L [B~l U~xx + B~2 V~YX + Bi6(U~yy + V~Xy)] = 9
k=l

A 66 (U,yx+ V,XX) + A 12 U,xy + A 22 V,yy
N

+ L [Bi6(U~yx + V~xx) + B~2 U~XY + B~2 V~yy] = 0
k=l

N

A S5 W,xx+ A44 W,yy + L [B~s U~x + B~4 V~y] +f = 10 W
k=l

B{ 1 U,XX + B{2 V,yX + Bi6 (v,yy + v,XY) - B~s w,x
N

+ L [D{\ U~xx + D{k2 V~YX + Dik6(U~yy + V~Xy) - D~\ Uk] = 0
k=l

Bi6 (U,YX + v,xx) + B{2 U,xy + B~2V,yy - Bi4 W,y
N

+ L [D~~(U~yX + V~xx) + D{k2U~Xy + D~k2 V~yy - D!t4 Vk] = 0
k=l

(21)
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(22)

for i, j = 1, 2, ... , N. These equations are subject to the boundary conditions

v=w=Vk=Nx=N~=O; x=O,a; k=l, , N

u = w = Uk = N y ~ N ~ = 0; y = 0, b; k = 1, , N

These boundary conditions are identically satisfied by the following expressions for displace­
ments (i.e Navier's solution procedure is used):

00

U = L X mn cos (Xx sin fly
m,n

00

V= L Ymnsin (Xx cos fly
m,n

00

W= L Wmn sin (Xx sin fly
m,n

00

U'k= L R ~n cos (Xx sin fly
m,n

(23a)

where

00

V k = L S~n sin (Xx cos fly
m,n

mn fl -_ nbn ,.(X=-;
a

k=l, ... , N

The' transverse load cap be expanded in double Fourier series

00

f(x, y) = L qmn sin (Xx sin fly
m,n

(23b)

Substitution of these expressions into the governing equations gives a system of2N + 3 equations
for each of the Fourier modes (m, n), from which we obtain the coefficients
(Xmn , Ymn , Wmn , R~n, S~n):

(24)
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Figure 6. Variation of the transverse shear stress
through the thickness of a three-layer cross-ply
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where {L11}T = {Xmn , Ymn , Wmn }, {A2}T = {R~n, S~n}, and the coefficients [k], [k ik ] and [k i ] are
given in the Appendix.

Once the coefficients (Xmn , Ymn , Wmn , R~n, S~n} are obtained, the inplane stresses can be
computed from the constitutive equations as '

(25)

o-Ax,y,z) = - ~n{[Ql1 lX ( X mn + kt
1
R~<I>k(Z»)

+Q12P( Ymn + kt
1
S~n<I>k(Z») ]SinlXXSin py}

o-y(x, y, z) = - f{[Q12 ct(Xmn + f R~n(J>k(Z»),
m,n k= 1

+Q22P( Ymn +kt S~n<I>k(Z»)]SinlXXSinpy}

o-Xy(X, y, z) =Q66 I {[p(xmn+f R~n<I>k(Z»)
m,n ", k= 1

+a( Ymn + kt
1
S~,j<I>k(Z») ]COSlXXCOS py}

The shear stresses are, computed using the equilibrium equations of the 3-D elasticity and
enforcing' continuity of stresses along the interfaces:

00

(Jxz(x, y,~)= L [{[(Qll ct2+ Q66p2)Xmn
m,n

N

+(Q12+,Q66)apymn ]z+ L {[(Qllct2+Q66p2}R~n
k=l

00

(Jyz(x, y, z) = L [{ [(Q66 + Q12)ctPXmn + (Q66 ct2 + Q22P2) Ymn]z

(26)

m,n
N

+ L {[(Q66 + QI2)apR~n + (Q66ct2 + Q22p2)S~n]J¢k dz}
k=I

+ Gi } sin ctxcos Py]

(27)
VI2 = V I3 = 0·25

All stresses are non-dimensionalized with respect to the applied load.

where Hi' Gi are constants introduced to satisfy the continuity of stresses.
To assess the quaiity of the theory we consider a three-ply symmetric laminate, simply

supported, and subjected to' sinusoidal transverse load. This problem has the 3-D elasticity
solution 15 and the classical plate theory (CPT) solution. The high quality of the solutions obtained
with this theory can be fully appreciated considering the stress distributions through the thickness
for (Jx,(Jy,(Jxy,(Jyz and (Jxz for a/h~4 (see Figures 3-7), and a/h=10 (see Figl,Jres 8-12). The
material properties of each ply are

E 1 /E 2 = 25·0, GI2 = 0·5£2, GI3 = G12 , G23 = 0·2£2
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Figure 10. Variation of the shear stress (fxy through
the thickness of a three-layer cross-ply laminate under

. sinusoidal transverse load
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Figure 12. Variation of the transverse shear stress (Jxz

through the thickness of a three-layer cross-ply lami­
nate under sinusoidal transverse load

The deflection w(x, y) obtained in the present theory coincides with the exact 3-D solution and
is not shown here. In all cases the present solutions for stresses are in excellent agreement with the
3-D elasticity solutions, whereas the CPT solutions are considerably in error.
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The analytical solutions of the generalized laminate plate theory are presented, and its accuracy isinvestigated bycotnparison with the 3-D elasticity th¢ory. The a:greement is found to be excellent,even for very thick plates. the theory gives accurate interlaminarstressdistributions, an.dshouldprove to be very useful in the failure analysis of composite laminates. The theory can be used toinvestigate vibration, stability and transient response of comp,osite'laminates, and extension of thetheory to study delaminations is ,c'l.lrre'ntly underway. ."
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APPENDIX

Coefficients of the matrices in equation (24)

k 11 == -All rx2 - A66 P2

k 12 == - (A 12 + A66 )rxP; k21 == k 12
k22=-A22P2_A66rx2; k13 ==k31 =O

k33 = -A44 P2 - A55 rx2; k23 = k32 = 0

k{ 1 == - B{ 1 rx2- B~6 p2
k{2 == -(B{2 + B~6)rxP;

k~2 == - B~2 p2 - Bi6 rx2

k~1 = -B~5rx

k~2 == - Bi4 /3
kik - - Dik - Dik tv 2 - Dik /3211 - 55 11 v., 66

kik - (Dik + Dik )tvp.12 - - 12 66 v., ,

kik - _ Dik _ Dik p2 _ Dik tv222 - 44 22 661.At
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