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SUMMARY

Analytical solutions for displacements and stresses in composite laminates are developed using the laminate
plate theory of Reddy. The theory accounts for a desired degree of approximation of the displacements
through the laminate thickness, allowing for piecewise approximation of the inplane deformation through
individual laminae. The solutions are compared with the 3-D elasticity solutions for the simply supported
case and excellent agreement is found. Analytical solutions are also presented for other boundary conditions.
The results indicate that the generalized shear deformation plate theory predicts accurate stress distributions
in thick composite laminates.

INTRODUCTION

Among the displacement-based refined theories that are available in the literature the first one is
due to Basset." Basset assumed that the three displacement components in a shell can be expanded
as a linear combination of the thickness co-ordinate and unknown functions of position in the
reference surface of the plate. The Basset type displacement expansions were used by Hildebrand
et al.,> Hencky,? Mindlin* and recently by Reddy®~7 to develop various first-order and higher-
order plate theories. An nth-order theory is one in which the displacements (often, the inplane
displacements) are expanded in terms of the thickness co-ordinate up to the nth power. The
equations of equilibrium or motion are derived often using the principle of virtual displacements.
Most of the refined theories do not require vanishing of the transverse shear stresses on the
bounding planes of the plate. The third-order theory advanced by Reddy>~ 7 satisfies the traction
free boundary conditions on the top and bottom faces of a laminate composite of orthotropic
layers.

All laminate plate theories derived from the Basset type expansion assume that the displace-
ments vary through the thickness of the laminate according to a single expression, not allowing for
possible discontinuities in the slopes of the deflections at the interfaces of two individual laminae.
Recently, Reddy® presented a laminate plate theory that allows piecewise representation of
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displacements through individual laminae of a laminated plate. The theory was extended to
include the von Karman non-linearity by Reddy and Barbero.® Similar, but different, theories
have appeared in the literature (see References 10-13). The present study deals with the analytical
solutions to the general laminate theory presented in Reference 8, and an evaluation of the
accuracy of the stresses predicted by the theory in light of the 3-D elasticity results. The
development of analytical solutions to the layer-wise displacement theory is by no means simple,
especially for boundary conditions other than simply supported. Although the basic theory was
presented in Reference 8, its solutions, hence the accuracy, have not been investigated previously.
The present work is in the same spirit as the works of Pagano,'* !> who presented analytical
solutions of the well-known first-order shear deformation theory to investigate shear deformation
effects in composite laminates. '

THEORETICAL FORMULATION

Consider a laminated plate composed of N orthotropic laminae, each being oriented arbitrarily
with respect to the laminate (x, y) co-ordinates, which are taken to be in the midplane of the
laminate. The displacements (u,, u,, u3) at a generic point (x, y, z) in the laminate are assumed to
be of the form (see Reference 8),

ul(x’ ys Z) = u(x’ y) + U(xa Y, Z)
uy(x, y, 2)=v(x, y) + V(x, y, z) (1)
uB(x’ Y, Z)= W(x’ y) ‘

where (u, v, w) are the displacements of a point (x, y, 0) on the reference plane of the laminate, and
U and V are functions which vanish on the reference plane:

Ulx, y, 0)=V(x,y,00=0 ' 2

Although the displacement component u5 is assumed to be constant through laminate thickness
in the present study, it is not a restriction of the GLPT as developed in Reference 8. The constant
state of u; through the thickness is justified in view of the relatively small magnitudes of the
transverse normal stress compared to the other stress components, and the assumption is used
extensively in most refined plate theories.

In order to reduce the three-dimensional theory to a two-dimensional one, Reddy® suggested
that the out-of-plane displacement functions be expanded as a linear combination of un-
determined functions of (x, y) and known functions of z:

Uxy.9)= ¥ U 5)0,0)

Vixy.9= 3. Vi 3)0,0) o)

where U’ and V7 are undetermined coefficients and ® ; are any continuous functions that satisfy

the condition
®;0=0 forallj=1,2,...,n 4)

The approximation in equation (3) can also be viewed as the global semi-discrete finite-element
approximations (see Reference 16) of U and V through the thickness. In that case ®; denote the
global interpolation functions, and U and V' are the global nodal values of U and ¥ (and possibly
their derivatives) at the nodes through the thickness of the laminate. For example, a finite-element
approximation based on the Lagrangian interpolation through the thickness can be obtained
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from equation (3) by setting n=pN + 1, where
N = number of layers through thickness
p= degree of the global interpolation polynomials, ®;(z), and
U/, Vi= global nodal values of U and V.
For p=1 (i.e. linear interpolation), we have
Ul=u), Ul=ul =u,.. ., Uk=yf V= u®
Vieo®, V2i=pM=p@ . . Vk= v =

)

where u{Y, for example, denotes the value of U at the Jjth node of the kth lamina. The linear global
interpolation functions are given by

‘/’(zk_l)(z), Z-1 2Kz
Yy P(2), 2, SZS 2,4

where Y (j=1, 2) is the local (i.c. layer) Lagrange interpolation function associated with the jth
node of the kth layer. If the mid-plane does not coincide with an interface, it is used as an interface
to satisfy equation (2). If U/, ¥/ correspond to the midplane interface, equation (2) is satisfied by
setting U/ and V7 = 0. Therefore n reduces to n=N.

The equilibrium equations of the theory can be derived using the principle of virtual
displacements (see Reference 8):

Nex+ Ny ,=0, N, .+ N,,=0

D, (2) = (k=1,2,...,N) (6)

Qx,x+Qy,y+f=0 (7)
where NL+NL,,—0i=0, Ni, +Ni, —Qi=0, (j=1,2,...,n)
h/2
(Nx, Ny9 ny) = J’ (ax, O'y, o-xy)dz
—h/2

h/2

(@, Q)= J (012, 0,,)dz

—h/2

h]2
(N%, NJ, Ni,)= f (0%, 0y, 0,,)®;(z)dz
—h/2

h/2 o
(01, 0f)= f e 0,2) 2 () d
. —h/2 dz

(04, 0y, Gy, O, 6,,) are the stresses and fis the distributed transverse load.
There are 2n+1 differential equations in (2n + 1) variables (u, v, w, U7, V7). The form of the
geometric and force boundary conditions is given below:

Geometric (Essential) Force (Natural)
u Nyn,+ N, +n,
v Nyyn.+Nyn,
w O.n.+Qyn, ©)
U’ Nin. + Ni,n,

Vi Ni,n.+ Nin,
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where (n,, n,) denote the direction cosines of a unit normal to the boundary of the midplane Q.
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where N
Ap= 2, 0®dz (p,g=1,2,6;4,5)
k=1 Jz
- N [zZk+1 . .
B:HI:I;Zl Q;q)q)ldz (P»q=1, 2’ 6)
T J 2Kk
= N [zx+1 o »
D= Y QN ®Iddz (p,q=1,2,6) (10b)
_ N (zi+:
Br= % Qﬁ‘q’ % @y, (p,q4=4,5)

_ Zr+t do’ do
D},= Z f Qﬁ,"q’d——dz (p,q=4,5)

foralli,j=1,2,...,n

ANALYTICAL SOLUTIONS

In this study we use a finite-element approximation based on the linear Lagrangian interpolation
through the thickness. In order to satisfy the conditions (2), we choose the midplane as an interface
and set U(x, y, 0)=V(x, y, 0)=0. A convenient way to accomplish this is to eliminate the variables
U’ and V7 at the midplane; therefore the number of necessary terms in (3) reduces ton=N, the
number of layers.

The coefficients A,, have the same meaning as in the classical plate theory (CPT). The
calculation of the coefficients B}, involves only the properties of the layers adjacent to the jth
interface because the functions (I) are identically zero at other interfaces. The same is true for the
coefficients D" v

Since the approximation through the thickness is built with a finite-element family of functions,
a standard, one-dimensional finite-elément procedure can be used to perform the integration. This
makes the procedure very general with respect to the number of layers, thicknesses and properties
that can be handled. The contribution of each layer to its adjacent nodes (located on the interfaces)
is then assembled in the usual way (see Reddy'®). The [B/] array has an entry for each interface.
The array [D/'] is equivalent to the mass matrix, and has a half bandwidth of 2.

Here we consider analytical solutions for the case of cylindrical bending of a plate strip under
various boundary conditions and for simply supported cross-ply plates

Cylindrical bending

The plate equations (7) can be specialized to cylindrical bending by taking v=0, V/ = 0, u=u(x),
U/ = U/(x), w=w(x). The equivalent equations can be written as

du? N d?U* d?w du*
Alld 3 ZBI;I d N2 —0 A55d 2+ZBSS d +f=0
d2u N vk b
Bud "Bssd Z[Dn dx? DJSSU]=O
Equations (11) consist of N + 2 equationsinu, w, UL, U2, . . ., U unknowns, where N denotes the

number of layers.
We consider the case of N =2 to illustrate the solution by the state-space procedure.!” First we
transform the system of equations (11) to a system of first-order ordinary differential equations.
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Introducing the unknowns x; through the relations
Otl=u OC3=W 0(5=U1 OC7=U2 (12)

w,=u  ag=w  ag=(U') ag = (U?)

we obtain a system of ordinary differential equations from equation (1),

{0} =[A]{e} + {F} (13a)
where

[4]=[A]" [B] .
{F}=[A41"" {/}

1 0 0 0 0 0 0 O]

o 0 1 0 0 0 0 O

0 0 0 0 1 0 0 0

[A]=0 o 0 0 0 0 1 O

0 A4, 0 0 0 B 0 B

0 0 0 Ass 0 0 0 O

0 B, 0 0 0 D 0 D2

0 B}, 0 0 0 Dt 0 D??

010 0 0 O 0 0] (0 )

000 1 0 0 0 0 0

000 0 O 1 0 0 0

- 000 0 0 0 0 1| . N G

000 0 O O 0 0 0

000 0O O —Bi 0 =—B — f(x)

0 00 Bi, DY O Dz 0 0

0 0 0 Bi DI 0 DI 0 o |

As a particular example, we consider a plate strip made of an isotropic material (E=30
x 10 psi, E/G = 25, h=2 in) in cylindrical bending. A uniformly distributed transverse load of

intensity f, is used. For this case [A] becomes

010 0 0 0 0 0 | (0 )

000 0 —65 0 —65 0 0

000 I o 0 0 0 0
000 © 0o 12 0 —12 —fo/24
=0 60 0o o 1 o ol W=y o W

000 —65 3 0 95 0 0

000 O o 0 0 1 0

000 65 95 0 3 0 .0
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The eigenvalues of the matrix [4] are
M=ly=dy=A,=1s=1s=0
A, =219 (15)
Ag=—14,

‘For this case we have only four linearly independent eigenvectors. For the eigenvalue 1 =0 the
eigenvector is of the form

{él} = {kl’os k2, 0, 0, O, O,O}T

To obtain other linearly independent solutions, we use the solution procedure presented by
Goldbery and Schwartz.!” First we set

| (A= 2D{&} = (&)
and find that A=0, and therefore
[A1{E,} = {¢,}
This yields
{2} = {ks, ky, kg, ky, ky, 0, —ky, 0}T
Next we set [A]{¢5} = {¢,} and find
{&3} = {ks, ks, ke, ks, ky, kyy —k,, —k,}Tand k, =0

which annihilates one of the eigenvectors.
Repeating the procedure, we obtain

{64} = {k79 ksa ksy ksag(kz +%k6), k4, -%(kz + %ks), _k4}T, k3 =0
{65} = {k7? k5a k89 k6’ - —54;1(5](2 + 6k6)’ k4a 54-1(5k2 + 6k6)3 —k4}T

Lastly, we set [A]{¢6) = {¢5}, and arrive at the condition k, =0, which annihilates the only
eigenvector left, so the process is terminated. The particular solution of the problem is

{2, (x)} = f [$(x—9)¢ ™' O1-{F(s)} ds (16)
where . _
01 0 «x 0 0
00 o0 1 0 0
1 0 x 0 x%)2 x3/6
2
$(x) = 3 3 : 3 ) 5/6’;1 22/2 (Gl (g5 Jeo> (17)
00 0 o X
00 —1 0 —x —5/6—x%/2
00 0 0 -1 —X |

The general solution is given by

{2x)} = ¢(x) {k} + {0,(x)} (18)
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where {k} is the vector of constants, which can be found using the boundary conditions. For
example, for a clamped—clamped case the boundary conditions at x= +a/2 are

u(—a/2) =u(a/2) =
w(—a/2)= w(a/2) =
U'(—a/2)=U"'(a/2) =
U*(—a/2)=U?%@/2)=
which give us eight equations to compute the eight constants in the vector {k}.

For the particular choice of a=20 in and uniformly distributed load of intensity f; = 1 1b/in, the
solution is given by

u(x) = (— 594 x 1072272195 307 x 107 26¢1%%)- 10

2 4
5
wx) = <f—— :8—0 + S5x* —229167)107°

(19)

5 3 '
U'(x)= <—x— 1);0 + 1118 x 107282195 4 615 x 10-26e2'19)c>.10-6
5 3
Uz(x)=<—gx+1—26+ 118 x 107 28e7219% 4 615 x 107 26e* 19") 10°°

Plots of the transverse deflection w as a function of the thickness ratio a/h are shown in Figure 1
for three types of boundary conditions: cantilever, simply supported and clamped at both ends.
For all cases a uniformly distributed load is used. Values for the exact 3-D solution'* for the
simply supported case are also shown. The deflections are normalized with respect to the CPT
solution. The present solution is in excellent agreement with the 3-D elasticity solution. We note
that the clamped plate exhibits more shear deformation.

Similar results are presented in Figure 2 for a two-layer cross-ply [0°/90] plate strip. The
material properties of a ply are taken to be those of a graphite—epoxy material:

E, = 1922 x 106 psi
E,= 156 x 106 psi
Gyy= G5 =082 x 106 psi

: (20)
Gz3= 0523 X 106 pSl
V12= V13 = 0'24
VZ3= 0'49

Once again, it is clear that the present theory yields very accurate results.

Simply supported plates

Consider a rectangular (a x b) cross-ply laminate, not necessarily symmetric, composed of N
layers. For such a plate the laminate constitutive equations (10) simplify because 4= A4,5= A5
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= Bis = Bys = Bis = D}, = Di = Di% = 0. The governing equations become

All u,xx + Allv,yx + A66(u.yy + v,xy)

N
+ Z [Blil Uf(xx
k=1

A66(u,yx+ v,xx) + A]Zu,xy + AZZU,y,v

+ B’iZ Vfc}'x + B’é6(Ufcyy + Vf‘xy)] = 0

N .
+ 2 [Boe (Ul + Vi) + BY, Uty + BS, V4,1 =0

N
A55w,xx+ A44W,yy + Z [B’.:)S U{(x + Bi4 V{‘y] +f= IOW
k=1

i . . .
Bll u,xx+ BJIZD,yx + B166(v,yy + U,xy) - B{"S w,x

N
+ X DY Ule + DIy Vi + DE(UY, + VA,) — DI UK =0

j . . .
BGG(qu’x-" v,xx) + BJIZu,x.v + Bézv,yy_ B{M-W,y

N
+ Y [Di&(U*,
k=1

+ V&) + DU + DY Ve, —DEVE]I=0

21
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fori,j=1,2,..., N. These equations are subject to the boundary conditions
v=w=V¥=N,=N“=0;, x=0,a; k=1,...,N
k . k . . (22)
u=w=U*=N,=N;=0; y=0,b; k=1,..., N
These boundary conditions are identically satisfied by the following expressions for displace-

ments (i.e Navier’s solution procedure is used):

X,aCOSaXSIn fy

I
Ms

u

8
=

Y .. Sin ax cos By

<
I
s

3

S n

W ... Sin ax sin Sy
" ' (23a)

s
I
s

8

U*= Y R},cosaxsin By

[
k ko
V=Y Sk, sinox cosfy
where m,n

nrm
- — = —; k=1...,N
a a9 ﬁ b, ’

The transverse load can be expanded in double Fourier series

fx, ) =Y g sinaxsin fy (23b)
. m,n

Substitution of these expressions into the governing equations gives a system of 2N + 3 equations

for each of the Fourier modes (m,n), from which we obtain the coefficients

) (an’ Ymn’ Wmn’ er‘nm S’r(nn): O
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Figure 6. Variation of the transverse shear stress
through the thickness of a three-layer cross-ply
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Figure 5. Variation of the shear stress o, through the
thickness of a three-layer cross-ply (0/90/0) laminate
under sinusoidal transverse load
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where {A'}T = {X,,., Y\, W}, {A2}T = {Ryn> Sk}, and the coefficients [k], [k’*] and [k'] are
given in the Appendix.

Once the coefficients (X,,,, Yo, Wons Ry, Sk} are obtained, the inplane stresses can be
computed from the constitutive equations as ’

[

ax(x, Vs Z)= - Z {[Qlla<xmn-+ i Ri‘m'(l)k(z)>

+ Q12ﬁ<Ymn + i Sf,,,,d)k(z)>]sin ox sin ﬁy}
k=1

00

ay(xa y, Z) = - z {[Q12a<xmn + i R,r;mq)k(z)>
, , ‘m,n i k=1 | (25)
+ Q22ﬂ< You+ 3, S’,‘,,,,Q"(z))]sinax sin ﬂy}

k=1

m,n

0 N
ot 3:2)=0os 34| #(Xm+ 3, REv0%01)

. | ;
+ a( Yo+ Y Sk, <I>"(z)>]cos ax cos ﬁy}
‘ k=1

The shear stresses are computed using the equilibrium equations of the 3-D elasticity and
enforcing continuity of stresses along the interfaces:

061, 2) = 3 [{L(Q11 0 + Qg ) X,

@iz + Qoo YonJo + 3, (011 + 0ea )R,

+(Q12 + Q66)afSh, 1 ®*dz} + H;} cos ax sin By ] 6)

0,.(x, y,2)= i [{[(Qes + Q12)0BX , + (Qe60® +0,,8%) Y, 12

N
+ 2 ALQos + QuaJt R, + Qoo + 022 8) Sk 1[ 6" d)
+ G;} sinax cos fy]

where H,, G; are constants introduced to satisfy the continuity of stresses.

To assess the quality of the theory we consider a three-ply symmetric laminate, simply
supported, and subjected to sinusoidal transverse load. This problem has the 3-D elasticity
solution'? and the classical plate theory (CPT)solution. The high quality of the solutions obtained
with this theory can be fully appreciated considering the stress distributions through the thickness
for 0,,0,,0,,,0,, and o,, for a/h=4 (see Figures 3-7), and a/h=10 (see Figures 8-12). The
material properties of each ply are

EI/E2=-25'0, GIZ =0'5E2, G13=G12, G23=0'2E2 (27)

All stresses are non-dimensionalized with respect to the applied load.
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The deflection w(x, y) obtained in the present theory coincides with the exact 3-D solution and
is not shown here. In all cases the present solutions for stresses are in excellent agreement with the
3-D elasticity solutions, whereas the CPT solutions are considerably in error.
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CONCLUSIONS

The analytical solutions of the generalized laminate plate theory are presented, and its accuracy is
investigated by comparison with the 3-D elasticity theory. The agreement is found to be excellent,
even for very thick plates. The theory gives accurate interlaminar stress distributions, and should
prove to be very useful in the failure analysis of composite laminates. The theory can be used to
investigate vibration, stability and transient response of composite laminates, and extension of the
theory to study delaminations is currently underway. '
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APPENDIX

Coefficients of the matrices in equation (24)

1

2

3

N

e BEN]

kiy=—A;10% — Agg p?

ky,= “(A12+A66)¢ﬂ§ kyy =ky,
k22=“A22ﬂ2*A66a2.; kiz=k;; =0
kyz= — A4 p? — Ass0?; kay=ks, =0
ki = —B{ o — B p?

kiz= —(Bi; + Bie)aB; ki, =ki,

- R R
kaz—_szzﬁ — Bgsa

k3= —Bisa

i ,

ki,= —Bj,p

jk __ ik jk 2 jk p2
ki = —D¥s— D} —Dgs B

ki, = — (D + D5 )ap; kyi =k,

K __ ik ik p2 jk 2
k%= —Diy— D% B — Dgsa
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