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Abstract 

The rate-dependent behavior of woven fabric (WF) composite with material nonlinearity and 3D 

geometrical nonuniformity are predicted using a proposed micro-meso-scale (MMS) model. The 

viscoelastic fiber and viscoplastic matrix are combined to obtain the properties of viscoplastic 

composite tows. Applying geometrical properties of WF and considering different local position 

and orientation of tows, the orthotropic viscoplastic behavior of WF composite is obtained. A 

progressive damage model is developed to consider damage modes in the composite tows. The 

stresses are redistributed over the intact regions according to the occurrence of the specific 

damage modes. Experimental rate-dependent tests are carried out on the epoxy matrix and 

unidirectional composite to measure the model constants. The rate dependency of the mechanical 

properties and nonlinearity of the stress-strain curves of the WF composite are then predicted and 

compared to additional experimental tests on the WF composite.  
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1. Introduction 

Woven fabric (WF) composites have benefits such as damage tolerance with application to 

marine, aerospace, and automotive industry. The WF laminates show nonlinear stress-strain 

curves due to the irreversible inelastic behavior of composite constituents and three-dimensional 

fabric structure. In addition, the initial mechanical properties and ultimate strength are loading-

rate dependent. Accurate prediction of the mechanical response of the WF composites are 

addressed here by considering four aspects, material nonlinearity, damage, rate-dependency, and 

WF internal geometry. 

The material nonlinear behavior of the WF composite that is due to the inelastic behavior of the 

matrix material has been studied by proposing various models to calculate plastic and 

viscoplastic deformations. Chung, Ogihara and Thiruppukuzhi [1-3] proposed potential functions 
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in terms of in-plane stresses to derive the plastic strain of the WF laminates and predict the 

nonlinear stress-strain curve. Marguet et al. [4] and Hochard et al. [5] proposed a potential 

function based on the in-plane shear stress to derive the plastic deformation of the WF 

composite. They suggested that in-plane shear stress is the effective parameter on the plastic 

behavior of the WF laminate. These macro-scale potential functions were used to calculate the 

global nonlinearity of the WF composite and did not take into account the share of matrix 

material on the nonlinear behavior of the WF composite. Huang [6] developed a 

micromechanical model that can take into account the effect of plastic behavior of the matrix 

material on the mechanical properties of unidirectional (UD) composite. Bai et al. [7], Goldberg 

and Stouffer [8], and Hsu et al. [9] proposed different forms of potential function based on the 

hydrostatic stress and second invariant of deviatoric stress to derive the viscoplastic behavior of 

matrix material. Shafiei and Kiasat [10] proposed a potential function based on the first invariant 

of stress, second and third invariants of deviatoric stress to derive the viscoplastic behavior of 

polymeric matrix. The constitutive equation considered the effects of hydrostatic and distortion 

stresses as well as the effect of loading angle. 

The loading-rate effects on the mechanical behaviors of the WF composite have been studied by 

means of experimental works. Lu et al. [11] demonstrated that increasing applied strain rate from 

10-3 to 103 s-1 on plain woven carbon/epoxy laminates result in an increase about 8.6% and 23% 

in the tensile initial modulus and strength [11]. Li et al. [12] showed that high strain rate from 

1281 to 2310 s-1 causes about 63% increase of ultimate strength of plain woven carbon/epoxy 

laminates. Chen et al. [13] illustrated that the linear stress-strain curve of woven carbon/epoxy 

composite at low strain rate of 10-3 s-1 changes to a nonlinear curve after increasing strain rate up 

to 1.8 ×102 s-1. Chung and Ryou [1] performed rate-dependent tensile tests on woven glass/epoxy 

fabric from 510-6 to 510-2 s-1 strain rates and data shows high rate-dependency of initial 

modulus which increases about 20%. On the other hand, Fitoussi et al [14] found that tensile 

modulus of woven carbon-epoxy laminates had no strain-rate dependency but increasing the 

strain rate from 0.5 to 60 s˗1 increases the tensile strength about 24%. 

Analytical meso-scale based methods have been chosen by researchers in the literature [6, 15-17] 

to describe the behavior of the WF laminate, where the material and geometrical description of 

the WF laminate were performed by considering a representative volume element (RVE) which 

is selected over the WF laminate. The three-dimensional RVE contains effective parts of the 

interlaced warp and fill composite tows. Kwon and Cho [16] modeled the composite tows with 

rectangular cross-section and ignored the undulation of tows over each other. Scida et al. [17] 

modeled composite tows considering their elliptical cross-section and undulation and used 

trigonometric functions to calculate the elastic behavior of WF laminate. Huang [6] and 

Adumitroaie and Barbero [15] took into account  the gap between adjacent tows in addition to 

the undulation and elliptical cross-section of composite tows.  

In this study, the nonlinear rate-dependent mechanical behavior of the WF composite is predicted 

using a new micro-meso-scale (MMS) model. The model considers the combined effects of rate-

dependent properties, viscoelastic glass fibers, viscoplastic polymeric matrix, damage 
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propagation, and 3D nonuniform geometry of the WF on the final nonlinear rate-dependent 

behavior of the WF composite.  

In this study, the micro- and meso-scale (MMS) models consider both the material nonlinearity 

and geometrical properties under rate-dependent loadings. The fiber and matrix with viscoelastic 

and viscoplastic behavior are combined in the micro-scale model to build UD composite tow 

with viscoplastic behavior. The interplay between the fiber rate-dependency elasticity and matrix 

rate-dependent viscoplastic behavior are implemented in the micro-scale model. Furthermore, the 

sinusoidal tow geometry and stacking sequence in the meso-scale model result in a WF 

composite with anisotropic viscoplastic behavior. At each differential step, the viscoplasticity of 

matrix and viscoelasticity of the fiber are updated, and consequently, the viscoplasticity of the 

composite tows and the WF composite are also updated. 

Furthermore, a strain-rate-dependent progressive damage model is developed to enhance the 

prediction of the stress-strain curves of the WF composite based on the viscoplastic behavior of 

sub-elements, composite tow, and matrix. Once the modes of damage are detected and failures 

occur in the specific directions of the sub-elements, the relevant stiffness matrices of sub-element 

are degraded, then the stiffness matrix of the RVE is updated and the stresses are redistributed 

over the intact regions. To derive the viscoplastic model constants, a series of experimental tests 

are carried out on the epoxy matrix and UD glass/epoxy composite at different strain rates. The 

MMS model is verified with good agreement by tensile tests performed on plain WF glass/epoxy 

composite at various strain-rates. 

While [15, 17, 18] describe a model to compute the elastic properties and strength of a fabric 

reinforced lamina, their analysis is limited to elastic materials. In this work, the model is 

extended to include rate-dependent fibers, rate-dependent viscoplastic matrix, and their effects 

on the final response of the WF composite. Furthermore, novel experimental data are presented. 

First, rate-dependent experimental data of unidirectional lamina is presented and used to 

calculate the rate-dependent properties of the fiber. Second, novel experimental data of Epoxy 

matrix is presented and used to calculate the matrix rate-dependent viscoplastic properties. Third, 

novel data is presented to study the rate-dependent viscoplastic response of woven fabric 

reinforced laminates and used to verify the numerical model. Fourth, in the MMS model, the 

effects of material properties and geometrical features on the rate-dependent viscoplastic 

behavior of the WF composite are addressed separately. 

 

2. Viscoplastic rate-dependent MMS Mechanical Modeling 

In the MMS analysis, the matrix and fiber are considered as viscoplastic and viscoelastic 

materials, respectively. The consequent viscoplastic composite tows from micromechanical 

modeling and geometrical properties of woven fabric are used in the developed meso-scale 

model to obtain a macro-scale WF composite with anisotropic viscoplastic behavior is obtained.  

 

 



4 
 

2.1. Rate-dependent micro-scale modeling 

2.1.1. Elastic relations of UD composite tow 

Micromechanics is the study of composite materials by considering the interaction of its 

constituent, fiber and matrix. In the micromechanics, the effective properties and response of the 

composite are calculated based on the properties and response of the constituents. Huang [6] 

proposed a micromechanical model to predict the effective properties and response of polymeric 

matrix UD composites under static loading. Characteristic of this model is that the stresses in the 

constituents of the composite are amended by a bridging matrix. The bridging matrix depends on 

the elastic and tangent moduli of the constituents. This approach is used here to develop a 

micromechanical model to predict rate-dependent behavior of composite tows. 

The bridging matrix [ ]ijP  maps the average stress in the fiber { }f
i  to the average stress in the 

matrix { }m
i  as follows [6]  

{ } [ ]{ }, , 1,...,6m f

i ij iP i j = =
 

(1) 

The general form of the bridging matrix with nonzero elements is defined as follows [6]  
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(3) 

In Eqs. (2) and (3), T
mG  and T

mE  are the shear and Young’s tangent modulus of the matrix 

material that are tangent to the stress-strain curve at each time step. ,fa ftE E  and faG  are the 

axial, transverse, and axial shear moduli of the fiber, respectively. The model parameters   and 

  are used to adjust the model with experimental results of UD composite, as explained in [6]. 
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Assuming that the out-of-plane shear responses are the same, then 55 66a a= . Experiments have 

been shown [6] that the transverse normal stresses of a UD composite are directly comparable to 

each other, 2 22 3 332 3,m f m fa a   = = , while the longitudinal stress can be assumed to correlate by 

three normal stress components, 1 11 12 131 2 3
m f f fa a a   = + + . Therefore, the bridging matrix is 

not symmetric but that does not affect the symmetry of the fiber and matrix stress, which in (1) 

are written in contracted notation, thus assuming symmetry of stress. In Eq. (3), 
f

ijS  and 
m
ijS  

( , 1,...,6)i j =  are the elements of compliance matrices of fiber [ ]f
ijS  and matrix [ ]m

ijS  

respectively. Parameters  and   in the bridging parameters control the influence of the 

transverse and shear components of fiber stress, respectively, on the like components of matrix 

stress. These parameters are adjusted with experimental data as per [6]. 

The relations of average stress { }i  and strain { }i of the UD composite tow in terms of average 

stress and strain of the fibers and matrix material are as  

{ } { } { }f m

i f i m iv v  = +  (4) 

{ } { } { }f m

i f i m iv v  = +  (5) 

{ } [ ]{ } , 1,...,6i ij jS i j = =  (6) 

For the tow, fv  and mv  are tow’s fiber and matrix volume fractions, in contrast to the overall 

volume fraction in the meso-scale, Eq. (9.7) in [18]. The total strain in representative volume 

element of UD composite is summation of volume-average strain of fiber, matrix, and voids. 

However, the void fraction is less than 1% in composite with acceptable quality. So that, the total 

strain is summation of volume-average strain of fiber and matrix [19]. In Eq. (6), [ ]ijS  is the 

compliance matrix of the UD composite tow. The stress and strain components in the fibers and 

the matrix are calculated in terms of compliance matrices 

{ } [ ]{ }f f f

i ij jS =  

{ } [ ]{ }m m m

i ij jS =  
(7) 

By substituting Eq. (1) into Eq. (4) and using Eqs. (5)-(7), the compliance matrix of the 

composite tow in the local coordinate system is obtained as a function of the mechanical 

properties of the fibers and matrix materials 

1[ ] ( [ ] [ ][ ])( [ ] [ ])f m

ij f ij m ij ij f ij m ijS v S v S P v I v P −= + +  (8) 

By means of Eqs. (7) and (1) into Eq. (5), the following equations are obtained to express the 

strain components of fibers { }f
i  and matrix material { }m

i  in terms of total strain of the 

composite tow { }j  

1{ } [ ]( [ ] [ ][ ]) { }f f f m

i ij f ij m ij ij jS v S v S P −= +  (9) 

1{ } [ ][ ]( [ ] [ ][ ]) { }m m f m

i ij ij f ij m ij ij jS P v S v S P −= +  (10) 
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2.1.2. Viscoplastic relations of UD composite tow 

Viscoplastic relations for fibrous composites are based on the nonlinear rate-dependent 

mechanical behavior of composite constituents which appear in [ ]ijP   and [ ]ijS  matrices. In this 

method, the strains in constitutive equations of composite are divided into the elastic and 

inelastic strains. The polymeric matrix material is assumed to have viscoplastic properties. On 

the other hand, fibers are assumed to have a rate-dependent elastic behavior, which is acceptable 

for a wide range of structural fibers such as glass [20]. On this basis, the total strain components 

of composite { }i  are divided into an elastic { }E
i  and inelastic { }I

i  parts 

{ } { } { }E I

i i i  = +  (11) 

The elastic and inelastic strain components are defined based on the elastic terms of fiber, elastic 

and inelastic terms of matrix, and furthermore their time derivatives 

{ } { } { } , { } { }E f E m E I m I

i f i m i i m iv v v    = + =  (12) 

{ } { } { } , { } { }E f E m E I m I

i f i m i i m iv v v    = + =  (13) 

The strain rate components of fiber { }f
i  and matrix { }m

i  are time derivatives of Eqs. (9) and 

(10). The mechanical properties of materials in Eq. (8) are functions of strain rate and using the 

chain derivative, the time derivative of the mechanical properties can be calculated. For instance, 

the time derivative of the elements of compliance matrix is ( )( )ij ijdS dt dS d d dt = . At 

constant strain-rate loading c = , the time derivative of the mechanical properties is zero 

0ijdS dt= . In addition, for each arbitrary load condition, the strain rate at each differential step 

can be assumed constant. Thus, the time derivative of the mechanical properties is zero during a 

differential step, and the strain rate components of fiber and matrix are 

1{ } [ ]( [ ] [ ][ ]) { }f f f m

i ij f ij m ij ij jS v S v S P −= +  (14) 

1{ } [ ][ ]( [ ] [ ][ ]) { }m m f m

i ij ij f ij m ij ij jS P v S v S P −= +  (15) 

In the proposed micromechanics model, the elements of Eqs. (1) and (8) are function of strain 

rate and should be rewritten as 

 ( ) ( ) ( )m f

j ij id P d     =    (16) 

1[ ( )] ( [ ( )] [ ( )][ ( )])( [ ] [ ( )])f m

ij f ij m ij ij f ij m ijS v S v S P v I v P     −= + +  (17) 

Eq. (15) indicates the share of strain rate in the matrix material from which the inelastic strain 

rate should be reduced. Further, the inelastic strain rate of matrix 
Im

ij  is obtained through the 

viscoplastic constitutive equation [10] as follows 

2
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2 1 3
exp ( 3 )
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m d

ij ij ij ij

e e

D Z
J C t I  
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    
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The inelastic strain rate of matrix, Eq. (18), is derived from the following potential function, Eq. 

(19), by means of an associated flow rule. 

3/2 3

2 3 1( )f J C J I= − +  (19) 

The inelastic strain rate of matrix is a function of second 2J  and third 3J  invariant of deviatoric 

stress tensor, first invariant of stress tensor 1I , effective stress e , and model parameters Z, C, 

D0 and n. ijt  is the derivative of 3J  respect to deviatoric stress 
d
ij . C  is determine by preserving 

the convexity of the potential function, Eq. (19), n  and Z  control the rate dependency and 

hardening of the polymeric matrix material, and 0D  has a constant value of 106.  Details on how 

to obtain the model parameters and extraction of Eq. (18) are explained in [10]. 

3
2

2

3

d d

ij ik kj ijd

ij

J
t J  




 = = −


 (20) 

In Eq. (18), 2J , 3J  and 1I  represent the effects of distortion, load angle and hydrostatic stress on 

the viscoplastic deformation. 

2.2. Rate-dependent meso-scale Modeling 

2.2.1. Representative Volume Element 

The weave pattern is the main characteristic of woven fabrics that imparts the benefits in the 

mechanical properties and fabrication with WF. Inherent undulation of the warp and fill tows due 

to the interlacing and weaving of tows in the fabric induces curvatures of the warp and fill 

composite tows on the yz and xz planes, which behave like off-axis composites, Fig. 1. From a 

geometrical viewpoint, all variable geometric components of the woven fabric, such as 

lenticular-like cross-section of tows, undulation, and the gap between adjacent tows, lead to a 

variable stiffness field. Due to the geometry and stacking sequence of warp and fill composite 

tows in the WF composite, Fig. 1, the stiffness changes across the surface (x, y positions) of the 

WF layer.  

 (a) 

 (b) 

Fig. 1. (a) Cross-section of a single WF layer, (b) selected RUC of a WF layer 
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Analytical modeling of the mechanical behavior of the WF composites considering varying 

mechanical and geometrical considerations is performed by defining a three-dimensional RVE 

consisting of interweaved composites of warp and fill tows. To create an RVE, a repetitive unit 

cell (RUC) of WF composite is considered, which has periodic properties and expresses the 

mechanical properties of the whole composite, Fig. 1. The two symmetrical planes of RUC of 

plain WF structure allows further reduction of the size required for analysis, to be a quarter RUC, 

Fig. 2(a). In addition, the quarter RUC with anti-symmetry conditions allows the selection of 

RVE, Fig. 2(b), which is 1/16 RUC and still represents the mechanical behavior of the WF layer. 

 

     

(a)                                                       (b) 
Fig. 2. Top and side views of (a) one quarter of an RUC, and (b) an RVE with details. 

The following equations provide a three-dimensional definition of RVE. The input parameters, 

presented in Fig. 2, include the thickness h  and width a  of the tow, and the gap g  between the 

contiguous tows. Subscripts ,w f  and m  represent the warp, fill and matrix elements, 

respectively. In the RVE geometric description, the formulations of the surfaces of the warp and 

fill composite tows are carried out to calculate the local undulation   and the occupied volume 

of the warp and fill composite tows V . The upper and lower boundary surfaces, 

, ,upper lower upper
w w fz z z and 

lower
fz , of the undulated composites of warp and fill tows are defined as 

follows [15] 

1
( , ) cos cos

2 2
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w w

f f w

h y x
z x y h
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 
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1
( , ) cos cos

2 2

lower w
w w

f f w

h y x
z x y h

a g a

 
= − −

+
 for [0, ]

2

wa
x   (22) 

1
( , ) cos cos

2 2

fupper

f f

w w f

h x y
z x y h

a g a

 
= − +

+
 for [0, ]

2

fa
y   (23) 

1
( , ) cos cos

2 2

flower

f f

w w f

h x y
z x y h

a g a

 
= − −

+
 for [0, ]

2

fa
y   (24) 

In the above equations, the first and second terms indicate the height of the middle surface and 

half the thickness of the composite tow’s cross-section. Using Eqs. (21)-(24), the undulation 

angle of the warp w  and fill f  tows, which are the local off-axis angles, are determined as 

follows 

( ) arctan ( )w w

d
y z y

dy


 
=  

 
 (25) 

( ) arctan ( )f f

d
x z x

dx


 
=  

 
 (26) 

The volume occupied by the warp wV  and fill fV  composite tows inside the RVE are obtained by 

multiplying the cross-sectional area by the undulated length 

2

2 2

0 0
1 ( ) cos

f f w w
a g a g

w w w

w

d x
V h z y dxdy

dy a


+ +

 
= +  

 
   (27) 

2

2 2

0 0
1 ( ) cos

f fw w
a ga g

f f f

f

d y
V h z x dydx

dx a


++

 
= +  

 
   (28) 

For the case of similar fiber volume fraction of the warp and fill composite tows fv , their 

volume fraction is calculated as follows by the overall fiber volume fraction of the WF 

composite 
c
fv ,  the latter is determined experimentally, and values are presented in Table 2.  

( )( )
, 1 ,

4( )

w w f fc

f f m f w f m

w f

h a g a g
v v v v h h h h

V V

+ +
= = − = + +

+
 (29) 

 

2.2.2. Rate-dependent stiffness matrices of the WF composite 

At the meso-scale analysis, the warp and fill tows are regarded as off-axis UD composites 

governed by equations in section 2.1. The viscoplastic behavior of the WF composite is obtained 

through Eqs. (30)-(33) based on the viscoplastic properties of the composite tows and their 

geometrical characteristics such as elliptical cross-section and undulation, and geometrical 

specifications of RVE in the meso-scale. In order to optimize the computational effort, the RVE 

is divided into four regions with different stacking sequences [15], regions I to IV in Fig. 2(b). 



10 
 

The stacking of the WF layers from bottom to top in regions I, II, III and IV are 

matrix/fill/warp/matrix, matrix/fill/matrix, matrix/warp/matrix, and pure resin, respectively. Each 

of the four regions is interpreted as a multi-layered composite with strain-rate-dependent 

stiffness matrix [Aij]. The extensional stiffness matrix [Aij] is a function of (x,y) coordinates of 

the RVE surface due to the undulation of the warp and fill composite tows. It can be written in 

terms of the through the thickness integration of the transformed stiffness matrices [ ( , )]ijC x y  of 

the warp, fill, and matrix layers as follows 

2

2
[ ( , , )] [ ( , , )] , 1,...,6

h

ij ij
h

A x y C x y dz i j 
−

= =  (30) 

where 1[ ] [ ]ij ijC S − = , the transformed compliance matrix 1[ ]ijS −  is obtained from Eq. (31), and the 

compliance matrix [ ]ijS  for the matrix and composite tow are obtained from Eq. (17) 

[ ( , , )] [ ( , )] [ ( , , )][ ( , )]T

ij ij ij ijS x y T x y S x y T x y  =  (31) 

The warp [ ( , )]ij wT x y  and fill [ ( , )]ij fT x y  transformation matrices are described in terms of sine 

and cosine of the undulated angle of warp ( )w y  and fill ( )f x  composite tows. The strain-rate 

dependent stiffness matrix of the RVE is obtained through a dual integral averaging process over 

the four regions of the RVE surface, as follows 

( ) 2 ( ) 2

0 0

4
[ ( )] [ ( , , )]

( )( )

w w f fa g a g

ij ij

w w f f

A A x y dxdy
a g a g

 
+ +

= 
+ +    (32) 

Based on the elements of the stiffness matrix [ ( )]ijA  , the rate-dependent tensile moduli 

( ), ( )x yE E  , shear modulus ( )xyG  , and the poison’s ratio xyv  of the WF composite are 

obtained as follows 

2

11 22 12

22

( ) ( ) ( )
( )

( )
x

A A A
E

hA

  




−
= , 

2

11 22 12
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( ) ( ) ( )
( )

( )

  




−
=y

A A A
E

hA
,  

66( )
( )xy

A
G

h


 = , 12

22

( )

( )
xy

A
v

A




=  

(33) 

In the experimental tests, the mechanical properties of materials such as modulus and strength 

are determined at specific point-wise strain rates. The following logarithmic model is used to fit 

the experimental results, so that the modulus and strength of the material at other strain rates can 

be obtained as well. 

0

0

( ) [1 ln( )]A A B





= +  (34) 

where A  is the mechanical property (modulus or strength), 0A  is the value of A  at the reference 

strain rate 0 , and B  is a constant that is determined by curve fitting. 
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3. Strength and failure criteria 

Based on the failure propagation method at the onset of material failure, the stiffness matrix is 

degraded using an incremental-iterative scheme and the load is redistributed over the intact 

regions. To obtain a good approximation to the strength, the RVE in Fig. 2 is divided into 

N M  elements along x and y directions, Fig. 3. The strength is calculated using the average 

stresses in the sub-elements, the warp and fill composite tows and the pure matrix. According to 

the iso-strain assumption, the applied in-plane strain tensor { , , }T
x y xy    on the WF composite is 

uniformly transmitted to the elements [15, 18, 21]. Using the local transformation matrices of the 

sub-elements, the local stress values are calculated. The element-based strength analysis and 

progressive failure are performed to degrade the stiffness matrix at the occurrence of single or 

simultaneous multiple damage modes. 

 

Fig. 3. Discretization of the RVE into elements 

 

The rate-dependent progressive damage model predicts the strength of the WF composite by 

predicting the onset of failure of the sub-elements and applies their effects on the strength of the 

elements and the whole WF composite. According to experimental results, there is no sudden 

failure in the WF composite, but some composite elements break down sooner than others. The 

proposed rate-dependent failure criterion is an extension of the Hashin failure criterion [22] with 

strain-rate-dependent mechanical properties used at each time step. Failure of composite tows 

and pure matrix are predicted using the proposed rate-dependent criterion. 

 

3.1. Rate-dependent failure criteria 

3.1.1. Rate-dependent longitudinal tensile mode 

“Longitudinal tensile mode” means traction failure along the fiber direction of a tow. Rate-

dependent tensile failure subjected to the tensile stress ( )
11( ) 0n   , is predicted by 

( )( ) ( )
2 2 22311 12

1 ( ) ( ) ( )

1 6 4

( )( ) ( )
( ) ( ) ( ) 1

( ) ( ) ( )

nn n

n n n

t

I
F F F

    

  
= + +   (35) 
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This equation states that when the stresses ( )
11( )n  , ( )

12 ( )n   and ( )
23( )n   in the material 

coordinates of each layer of composite tows satisfy the condition of 1 1I   at the time step ( )n  

and under load with strain rate  , failure occurs due to the tension in the fibers. ( )
1 ( )n
tF  , 

( )
6 ( )nF   and ( )

4 ( )nF   are the rate-dependent longitudinal tensile, in-plane shear, and out-of-plane 

shear strength of the UD composite at time step ( )n . Experimental values reported in section 

5.2.1.  

3.1.2. Rate-dependent transverse tensile mode 

“Transverse tensile mode” means traction failure perpendicular to the fiber direction of a tow. 

Rate-dependent transverse failure when subjected to transverse tensile stress ( )
22 ( ) 0n   , is 

predicted by 

( )( ) ( )
2 2 22322 12

2 ( ) ( ) ( )

2 6 4

( )( ) ( )
( ) ( ) ( ) 1

( ) ( ) ( )

nn n

n n n

t

I
F F F

    

  
= + +   (36) 

This equation states that when the stresses ( )
22 ( )n  , ( )

12 ( )n   and ( )
23( )n   in the material 

coordinates of each layer of composite tows satisfy the condition of 2 1I   at the time step ( )n  

and under load with strain rate  , failure occurs due to the transverse stresses in the matrix. 
( )

2 ( )n
tF   is rate-dependent transverse tensile strength of the UD composite at the time step ( )n .  

Equations (35-36) are used for both composite tows and pure matrix (between tows). The 

strength values of composite tows, F1t, F2t, F6, and F4 at different strain rates are obtained 

through Eqs. (41-43). The strength values of matrix, F1t=F2t and F4=F6 are obtained from Fig. 8 

and Tables 5-6.  

 

3.2. Strength values 

The experimental results presented in section 5, illustrate that the tensile behavior of the WF 

laminate is primarily controlled by the fibrous composite tows along the load path, while the 

transverse composite tows fail due to matrix failure. The transverse damage occurs along the 

fiber direction without fiber breakage [23]. At the onset of failure of the WF composite under 

longitudinal tensile load, the longitudinal composite tows fail due to the tensile fiber failure and 

lost all load-carrying capacity. However, the transverse composite tows fail due to the transverse 

matrix cracking, but due to the friction between the fibers and the matrix, the tows do not lose 

their integrity and load-carrying capacity [24, 25]. The experimental data of the WF composite in 

section 5 demonstrates that during failure of the pure resin and transverse tows, which are prior 

to the failure of the longitudinal tows, there are no sudden steps in the stress-strain curves. 

Some researchers have suggested that under transverse tension, the transverse modulus reduces 

to 0.01 of the initial values [26]. However, the onset of transverse failure is only a sign of first 

matrix cracking, which means that the composite is still capable of carrying more loading and the 

stiffness should not be reduced dramatically, but slowly [27].  
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In a WF composite, the longitudinal and transverse composite tows are bonded to each other by 

resin sub-elements. During matrix cracking of transverse tows and pure resin sub-elements, loss 

of strength does not occur dramatically but slowly. Therefore, in this work, the transverse 

modulus of the transverse tows and the modulus of pure resin are assumed to be 1dt f dtE d E+ = , 

where fd  is the degradation factor. Its value ( 0.99fd = in this work) is determined by try and 

error, to adjust the predicted stress-strain curves to the experimental ones. Such a high value 

means that the modulus reduction due to matrix cracking has a very small effect on the overall 

response of WF composite, perhaps due to the undegraded stiffness of the fiber tows. The final 

breaking point of the material is determined by the failure of the longitudinal tows, precipitating 

the failure of the WF laminate. The proposed damage propagation method is verified by the 

experimental results in the section 5.2. 

Numerical predictions of the stress-strain curves calculated with six different number of 

increments are shown in Fig. 4. The maximum deviation from the experimental results is +1.3% 

for 110 increments and -5% for 300 increments. While low number of increments introduces a 

slight artificial stiffening, large number of increments have the opposite effect, inducing a slight 

artificial softening, but as it can be seen in the figure, the deviations are small.  
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Fig. 4. Tensile stress-strain curves for different six number of increments 
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3.3. Flowchart of the MMS strength analysis 

The flowchart of the MMS model is presented in Fig. 5. According to the applied strain rate on 

the composite tows, the share of strain rate of the polymeric matrix is determined, and the 

inelastic strain rate is calculated using Eq. (18). The stress-strain curve of the matrix is obtained 

and its tangent modulus at each time step can be calculated. It should be noted that at the first 

time-step, the calculation of the stiffness matrix of composite tows and matrix are based on the 

quasi-static strain rate. The updated value of tangent modulus of the matrix is used to update the 

bridging matrix in Eq. (2), which leads to update the compliance matrix of the composite tows 

and matrix sub-elements in Eq. (17). When the compliance matrix is updated, the local stiffness 

matrices in Eq. (30), and total stiffness matrices in Eq. (32) are updated. This means that an 

update of the value of tangent modulus of matrix material at each time step leads to an update of 

the mechanical properties of WF composite in Eq. (33).  

At each small step, the tangent modulus from previous step is used as an input parameter, then its 

value is updated to achieve the convergency and used in the calculation of the stiffness matrices 

of the WF composite. The updated values of the stress in the sub-elements are checked in the 

failure criteria. If failure has been occurred, the relevant compliance matrix of the sub-element is 

reduced, Eq. (17), which reduces the local stiffness matrix, Eq. (30), and total stiffness matrices, 

Eq. (32). Otherwise, at the next time step, 1m + , the new stress value of polymeric matrix is 

calculated to update tangent modulus and stresses of the sub-elements. In Fig. 5, , 1,2kI k =  are 

different modes of failure. The tensile failure of composite tows along load direction, 1 1I  , 

means the final failure of the WF composite. 
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Fig. 5. Flowchart of the MMS model 

 

4. Materials and methods 

The MMS model requires the properties of its components under the rate-dependent loading to 

predict the behavior of the WF composite at various strain rates. In this study, the dynamic 

behavior of epoxy polymer as a matrix material and glass fibers are extracted using rate-

dependent experiments on epoxy and UD glass/epoxy composites specimens. The experimental 

tests on the plain glass/epoxy WF composites are used to validate the MMS model. An Epolam 



16 
 

industrial epoxy resin was selected for the experimental part of this research, which includes 

Epolam resin 2017 and Hardener Epolam 2018. The physical properties and fabrication methods 

of tensile and shear specimens were described in the previous study [10]. The geometric 

specifications of the woven glass fabric are shown in Table 1. 

Table 1. Geometrical specifications of woven glass fabric 

Warp tow Fill tow 

(mm)wa  (mm)wh  (mm)wg  (mm)fa  (mm)fh  (mm)fg  

3.5 0.45 0.025 3.5 0.45 0.025 

 

Six layers of reinforcements are selected to fabricate laminated UD and WF composites, which 

there is no relative change between the arrangements of the adjacent layers. The vacuum infusion 

process (VIP) is used to uniformly impregnate the layers and minimize cavities, poor or rich-

resin regions, Fig. 6. It is noted that in the VIP, a black mesh is used. To reduce the porosity and 

voids of the WF composite to a minimum level, the mixed resin and hardener was degassed prior 

to the injection process. The properties of the UD and WF laminates are described in Table 2. 

The fiber volume fraction of laminates are calculated using matrix burn off method according to 

ASTM D3171 standard and reported in Table 2. Fiber properties are discussed in section 5.2.1. 

  

(a)       (b) 
Fig. 6. Photograph of the vacuum infusion process of WF laminate with black mesh 

 

Table 2. Number of layers, thickness, and overall fiber volume fraction of manufactured laminates 

Material Code 
Number of 

Layers 

Laminate 

Thickness (mm) 

Overall fiber 

volume fraction 

WF Laminate 
G-3 6 3.0 0.51 

G-4 6 2.7 0.59 

UD laminate UD 6 1.5 0.66 
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The mechanical behavior of the UD and WF composite are considered under rate-dependent 

tensile loadings, while the behavior of the epoxy polymer is considered under both rate-

dependent tensile and shear loadings. Dimensions of specimens are listed in Table 3. 

 

Table 3. Dimensions of specimens 

 
Material 

WF and UD composite Epoxy polymer 

Tensile specimens 35330 (mm) 35250 (mm) 

Shear specimens - 7570 (mm) 

 

The WF and UD composites, and epoxy polymer specimens are tested at five different 

displacement rates, Table 4. It is noted that due to the different geometry of tensile and shear 

specimens, the different strain rates are induced in the specimens. The tensile and shear tests 

were performed using Instron 8802 in accordance with ASTM D3039 and ASTM D7078 

standards. 

Table 4. Applied displacement rates to samples 

Material Displacement rates 

WF and UD composite 2, 20, 200, 2000, 3240 (mm/ min)  

Epoxy polymer 3, 30, 300, 2000, 3000 (mm/ min)  

 

In the proposed model, besides customary materials properties that can be measured by standard 

methods, there are only 3 parameters ( ,  , and fd ). Parameters   and   are part of bridging 

matrix model, with values determined following the methodology explained in [6].  

The value found for 0.99fd =  (Section 3.2) suggests that matrix damage has negligible effect on 

the rate-dependent viscoplastic repose of WF composites subjected to in-plane traction loads. 

Thus, a set of experiments different from the validation ones was deemed unnecessary. 

Furthermore, testing equipment do not allow us to test other loading scenarios (besides uniaxial 

extension) under which more sophisticated, strain-dependent damage evolution laws may be 

needed. 

 

5. Results and discussion 

5.1. Experimental results 

The viscoplastic model constants are characterized using several rate-dependent experimental 

tests on UD composite and epoxy polymer specimens, and to verify the MMS viscoplastic 

model, the rate-dependent experiments are carried out on the WF composite. 
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5.1.1. Stress-strain behavior of polymer matrix 

In order to characterize and model the viscoplastic behavior of epoxy polymer based on Eq. (18), 

it is required to define tensile and shear tests at various strain rates. The epoxy polymer has 

tensile and shear gage of 13035 mm and 2570 mm with thickness of 5 mm, Fig. 7. The details 

of tensile and shear tests, and modeling the viscoplastic behavior of epoxy polymer are discussed 

in [10].  

 

Fig. 7. Epoxy resin specimens for (a) tensile test, (b) shear test [10] 

 

The experimental results of tensile and shear stress-strain curves at five strain rates are presented 

in Fig. 8 (a) and (b). The tensile stress-strain curves have slight curvature that repeated very well 

and ended with sudden fracture. At higher strain rates, the specimens show a lower curvature 

than at low strain rates, and the curve tends to be a straight line. Compared to tensile tests, a 

significant nonlinear stress-strain behavior is observed under shear loading even at low strain 

rate. The stress-strain curves at the end of the shear tests converge to a horizontal area before 

breaking point, this means that the saturation stress and shear strength of the material are 

convergent [10]. The values of the initial modulus, ultimate strength and failure strain for the 

tensile and shear loading are represented at different strain rates in Tables 5 and 6. 
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(a)                                                             (b) 

Fig. 8. (a) Tensile tests, (b) shear tests of epoxy matrix performed at five strain rates [10] 

 

Table 5. Experimental initial tensile modulus, tensile strength, and tensile strain-to-failure of epoxy 

matrix at five strain rates [10]. 

Strain rate [s-1] Initial modulus [GPa] Ultimate Strength [MPa] Failure strain 

42.56 10−  3.20 44.1 0.015 

32.56 10−  3.17 49.2 0.017 

22.56 10−  3.28 51.0 0.017 

12.56 10−  3.36 57.9 0.019 

14.15 10−  3.39 60.5 0.021 

 

Table 6. Experimental initial shear modulus, shear strength, and shear strain-to-failure of epoxy matrix at 

five strain rates [10]. 

Strain rate [s-1] Initial modulus [GPa] Ultimate Strength [MPa] Failure strain 

31.33 10−  1.26 32.2 0.105 

21.33 10−  1.29 35.9 0.100 

11.33 10−  1.32 41.6 0.111 

1.33  1.39 47.7 0.092 

2.16  1.42 48.9 0.105 
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The strain was measured using the testing machine’s built-in extensometer, and the compliance 

of testing machine used is much higher than the compliance of the specimens. The range of 

strain rate used for the testing and validations was aimed to characterize the mechanical 

properties at some strain rates and used them to predict the stress-strain curves at some other 

strain rates. Furthermore, the displacement rates were applied up to the maximum velocity limit 

of the testing machine, which is 3000 mm/min. 

Fracture pattern of tensile specimen 

The fracture patterns of tensile specimens at strain rates of 42.56 10−  and 1 14.15 10 ( )s− −  are 

shown in Figs. 9 (a) and (b) [10]. The fracture patterns show that the crack starts within the 

gauge length and propagates normal to the load direction. The fracture surfaces indicate that the 

specimens are sensitive to the normal stress and prove that the maximum average stress occurs 

within the gauge length rather than in the grips. These phenomena justify the application of 

rectangular specimens in accordance with ASTM D3039 standard.  

 

Fig. 9. Tensile-fracture patterns of resin specimens tested at (a) 2.5610-4 1/s and (b) 4.1510-1 1/s. [10] 

 

Fracture pattern of shear specimen 

The fracture patterns of shear specimens at strain rates of 1.33  and 1 11.33 10 ( )s− −  are shown in 

Fig. 10 (a) and (b) [10]. Fracture patterns show that the fracture on the oblique plane about 45 

degree starts from the middle of specimens and propagates toward the edge of specimen. The 

crack stops at the fixture and continues parallel to the fixtures to the two ends of the specimen. 

Further, the multi-crack in the oblique plane is due to the continuous loading after cracking.  
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(a)                                                    (b)   

Fig. 10. Shear-Fracture patterns of resin specimens tested at (a) 1.33 1/s and (b) 0.133 1/s [10] 

 

The strain-rate dependence of the moduli and strengths values of the tensile and shear tests are 

shown in Figs. 10 and 11 [10]. The global slope of the tensile stress-strain curve increases with 

increasing strain rate, so that the initial modulus and ultimate strength for increasing strain rate 

from 
4 12.56 10 s− −  to 

1 14.15 10 s− − , increase about 6.9% and 37.5%, Fig. 11 (a) and (b). The 

shear stress-strain curves show rate dependency, which over three decades of increasing strain 

rate from 
3 11.33 10 s− −  to 

12.16 s−
 the shear modulus and strength increase about 12% and 

51.7%, Fig. 12 (a) and (b). The tensile and shear moduli have almost no scattering in 

experimental results, but the tensile and shear strengths have maximum scattering about 5% and 

6% that are show by error bars. 
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Fig. 11. Rate dependency of the tensile (a) initial modulus and (b) strength of epoxy matrix [10]. 
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[10] 

 

5.1.2. Stress-strain behavior of UD composite 

Study of the mechanical behavior of fibers as the reinforcement constituents of the composite 

under dynamic loadings show that some fibers, like carbon fibers, are not sensitive to the loading 

rate, but the mechanical properties of the glass fibers are function of the strain rate. The 

mechanical properties of fibers dominate the longitudinal mechanical properties of UD 

composite. Using rule of mixture method and knowing the fiber volume fraction, modulus and 

strength of the UD composite and matrix material, the strain-rate dependent mechanical 

properties of glass fibers are obtained. Then, a series of tensile tests at various strain rates are 

carried out on the UD glass/epoxy composite. The specimens of UD composite have a gage part 

of 25210 mm, Fig. 13. 

 

 

Fig. 13. UD composite specimen mounted on testing machine 
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The tensile stress-strain curves of UD composite at five strain rates are presented in Fig. 14. Due 

to the fiber dominant properties of the UD composite, the tensile stress-strain curves of the UD 

composite at different strain rates are nearly linear. The values of the initial modulus, ultimate 

strength and failure strain for the tensile loading are represented at different strain rates in Tables 

7. 
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Fig. 14. Tensile stress-strain curves of UD composite at different strain rates 

 

Table 7. Experimental results of initial modulus, strength, and failure strain of UD composite at five 

tensile strain rates 

Strain rate [s-1] Initial modulus [GPa] Ultimate Strength [MPa] Failure strain 

42.38 10−  39.8 827 0.024 

32.38 10−  40.8 844 0.023 

22.38 10−  41.7 964 0.026 

11.59 10−  42.2 1016 0.029 

12.38 10−  42.5 1092 0.031 

 

The initial modulus and ultimate strength of UD glass/epoxy composite show rate-dependent 

behavior. Increasing strain rate from 2.3810-4 to 2.3810-1 s-1 cause increase about 5.8% and 

32% in initial modulus and ultimate strength, Fig. 15 (a) and (b). The experimental scattering of 

the results of the modulus and strength are small about 3% that is negligible. 
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(a)                                                                          (b) 
Fig. 15. Rate dependency of the of UD composite (a) Initial modulus and (b) Ultimate tensile strength  

 

5.1.3. Tensile stress-strain behavior of WF laminate 

The gage length of the tensile test specimens of the WF glass/epoxy composite is 210 mm, Fig. 

16. The specimens are tested at five strain rates from 
4 12.38 10 s− −  to 

1 12.38 10 s− − . Two WF 

laminates are used to perform all five strain rates, Table 2. Due to the difference in the fiber 

volume fraction of WF laminates, Table 8 shows which laminate was used for each strain rate. 

To ensure the repeatability of the results, each constant tensile strain rate was repeated three 

times. For instance, the tensile stress-strain curves at 
1 11.59 10 s− −  strain rate are presented in 

Fig. 17. 

Table 8. Range of applied strain rate on each WF laminate 

WF laminate Code Applied strain rate 
1( )s−

 

G-1 4 3 22.38 10 , 2.38 10 , 2.38 10− − −    
G-7 1 11.58 10 , 2.38 10− −   
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(a)                                                     (b) 

Fig. 16. Tensile specimen of WF laminate. (a) Intact and (b) Failed specimen with 
2 12.38 10 s− − strain 
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Fig. 17. Tensile stress-strain curves of WF laminate at 
1 11.59 10 s− −  strain rate. 

It is observed that the initial modulus and the nonlinearity of the stress-strain curves are 

repeatable. The ultimate strength of the WF composite, i.e., the breaking point, has reasonable 

scattering. The longitudinal composite tows control the fracture of the WF composite. The 

pattern on the fracture surface, Fig. 16 (b), shows that the crack starts and grows at the mid-

length of the gage length is normal to the load direction. The fracture of the transverse tows, with 

lower transverse strength, happens prior to the fiber rupture of the longitudinal tows that govern 

the ultimate strength. 

Rate-dependency of the tensile modulus and strength 

To study the rate-dependent behavior of the WF laminate under tensile loading, the tensile stress-

strain curves are presented at five strain rates in Fig. 18. The curves start with small linear 

regions and with increasing strain, the curvature of curves that is the sign of nonlinearity 

increases. Two important parameters in the nonlinear behavior of material are the fabric pattern, 

and stiffness reduction due to the polymeric matrix plasticity and damage. The off-axis warp and 
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fill composite tows transition from linear to nonlinear behavior. The overall behavior of the WF 

composite under tensile load consists of linear fiber dominant behavior of longitudinal tows and 

nonlinear plastic behavior of the transverse tows, both with rate-dependent behavior. The values 

of the initial modulus, ultimate strength and failure strain for the tensile loading are represented 

at different strain rates in Table 9. 
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Fig. 18. Tensile stress-strain curves of WF laminate performed at five strain rates 

 

Table 9. Experimental results of initial modulus, strength, and failure strain of the WF composite at five 

tensile strain rates 

Strain rate [s-1] Initial modulus [GPa] Ultimate Strength [MPa] Failure strain 

42.38 10−  25.04 460.7 0.027 

32.38 10−  25.67 505.2 0.029 

22.38 10−  26.21 546.4 0.033 

11.59 10−  27.06 606.8 0.037 

12.38 10−  28.15 649.2 0.039 

 

To show the nonlinearity of the tensile stress-strain curves of the WF composite and their 

deviation from the linear behavior, a tangent line is drawn at the beginning of the curves, which 

representing the linear elastic behavior, and continues until the fracture strain. At each strain 

level, the degree of deviation from linear behavior is due to the local stiffness reduction for 

material and geometrical nonlinearity that lead to the reduction in stress level, Fig. 19. Tensile 

stress-strain curves have the same pattern. As the strain increases to the fracture point, at any 

constant strain rate, the nonlinearity increases dramatically. The continuous line in Fig. 19 

represent the experimental results. The maximum deviation of tensile stress-strain curves from 
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the linear behavior occurs at fracture. Deviation for each strain rate are presented in Table 10. 

According to the results, the nonlinearity of the tensile stress-strain curves is significant. 
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(c)                                                                                          (d) 

Fig. 19. Comparison of the maximum stress of the experimental results and linear pattern at 

different strain rates 

 

Table 10. Comparison of experimental stress results and linear-pattern stress of the WF composite 

Strain rate 
1[ ]s−

 
Failure strain 

Maximum experimental 

stress [MPa] 

Maximum linear-

pattern stress [MPa] 
Deviation [%] 

42.38 10−  0.027 461 640 39 
32.38 10−  0.029 500 740 48 
22.38 10−  0.033 546 800 46 
12.38 10−  0.039 650 960 48 
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Two important parts of the tensile stress-strain curves are considered at different strain rates, the 

initial modulus and ultimate strength. Increasing strain rate from 
4 12.38 10 s− − to 

1 12.38 10 s− −  

increase initial modulus and ultimate strength about 12% and 40%, Fig. 20 (a) and (b). The 

scattering of the experimental results of the ultimate strength is about 5% that is shown by error 

bar, but for initial modulus is less that 3% that is ignorable. 
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(a)                                                                                          (b) 

Fig. 20. Rate-dependent behavior of (a) Initial modulus and (b) Ultimate strength of WF laminate 

 

5.2. Model prediction results 

5.2.1. Viscoplastic behavior of WF composite 

The rate-dependent MMS model to predict the mechanical properties of the WF composites was 

presented in section 2, Eqs. (30)-(33). To apply this model, it is required to specify rate-

dependent mechanical properties of fiber, matrix, and UD composites. The viscoplastic 

constitutive equation, Eq. (18), that is used to describe the viscoplastic behavior of the polymeric 

matrix has the following material constants [10], Table 11. 

 

Table 11. Model parameters for the epoxy resin [10] 

0D  

[s-1] 

0Z  

[MPa] 

1Z  

[MPa] 
n  q  C  

106 627.2 1105.2 0.52 80.1 ˗1 

   

Due to the rate-dependent behavior of the UD composite in Figs. 13 and 14, it is necessary to 

determine the mechanical properties of glass fibers at different strain rates. The longitudinal 

modulus of the UD composite follows the rule of mixture as 
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11 11 11( ) ( ) ( )f f m mE v E v E  = +  (37) 

where 11( )E  , 11 ( )fE  and 11 ( )mE   are the longitudinal elastic modulus of the UD composite, 

fiber and matrix at strain rate ( ) , respectively. The fiber and matrix volume fractions are fv  

and mv . Similar to the rule of mixture for the longitudinal modulus of the UD composite, the 

following relation can be written for the rate-dependent longitudinal strength of UD composite 

1 ( )tF   based on the longitudinal strength of fiber ( )faF   and matrix ( )mF   at strain rate ( )  

1 ( ) ( ) ( )t f fa m mF v F v F  = +  (38) 

Using experimental results of the UD composite, Figs. 13 and 14, and relations (37) and (38), the 

elastic modulus and strength values of fiber at each strain rate are calculated. Using Eq. (34), the 

fitted equation for the elastic modulus ( )f
faE   and strength ( )f

faF   of the glass fiber in the 

following form are obtained 

4 1

4
( ) 55885[0.0019ln( ) 1] ( ) 2.38 10 ( )

2.38 10

f
f f

faE MPa s


  − −

−
= +  


 (39) 

4 1

4
( ) 1186.7[0.0464ln( ) 1] ( ) 2.38 10 ( )

2.38 10

f
f f

faF MPa s


  − −

−
= +  


 (40) 

The value of shear modulus of glass fibers at different strain rate obtains from 

( ) 2 ( )(1 )f f

fa fa fE G  = + , where f  is Poisson’s ratio of glass fibers that is 0.3. The fitted Eqs. 

(39) and (40) are presented in Fig. 21 (a) and (b). 
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(a)                                                                                          (b) 

Fig. 21. The fitted equations for the (a) modulus and (b) strength of the glass fiber at five strain rates 
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The model parameters   and  , Eq. (3), that are used to adjust the response of the UD 

composite tow to the experimental results are taken as 0.5 and 0.6, respectively. The values of M 

and N for discretization of the RVE, Fig. 3, are chosen as M=N=63. These values are increased 

in successive runs until convergence of predicted modulus and strength are achieved. No 

localization is detected because the domain coincides with the RVE, so that the response is 

periodic, which does not allow us to detect localization. The progressive damage model needs 

the strength of the UD composite at different strain rate, so that, the fitted Eq. (41) is used to 

describe the rate-dependent longitudinal strength of the UD composite 1 ( )tF  . This fitted 

equation is presented in Fig. 22. The transverse and shear strengths of UD composite are 

estimated based on the 1 ( )tF   and results presented for UD glass/epoxy in [20]. The fitted 

equation for the transverse strength 2 ( )tF   and shear strength 6 ( )F   of the UD glass/epoxy 

composite are presented in Eqs. (42) and (43). It is observed that the transverse and shear 

strengths of the UD glass/epoxy are very close to the longitudinal and shear strengths of the 

epoxy matrix, Fig. 7. 

4 1

1 4
( ) 797.98[0.0465ln( ) 1] ( ) 2.38 10 ( )

2.38 10
tF MPa s


  − −

−
= +  


 (41) 

3 1

2 3
( ) 47.673[0.0344ln( ) 1] ( ) 2 10 ( )

2 10
tF MPa s


  − −

−
= +  


 (42) 

3 1

6 3
( ) 39.42[0.0315ln( ) 1] ( ) 10 ( )

10
F MPa s


  − −

−
= +   (43) 
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Fig. 22. The fitted equation of the longitudinal strength of the UD composite 

 

Applying the material properties of the fibers and the matrix, the geometric description of the 

RVE, and the progressive damage model in the MMS model, the tensile behavior of the WF 

composite is predicted. Comparison of tensile stress-strain curves obtained from experimental 

results and predicted values of MMS model at different strain rates are presented in Fig. 23. The 

tensile stress-strain curves at different strain rates and the rate-dependency of the initial modulus 
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and ultimate strength are predicted well, Table 12. In addition to the viscoplasticity of the 

transverse composite tows, Eq. (17), the failure propagation method and selecting appropriate 

damage factor, section 3, reduce stiffness matrix properly and obtain stress-strain curve with 

acceptable curvature that follows the experimental results. 

According to iso-stain hypothesis and continuity of strain over the WF composite, equal in-plane 

strains are applied in each element, Fig. 3, namely warp and fill composite tows and pure resin 

[15, 18, 21]. In each element of WF composite the warp and fill composite tows are under 

transverse and longitudinal tension. The transverse strength of composite tows and strength of 

pure resin are similar. However, due to the significant difference in their modulus, the pure resin 

undergoes degradation at a higher strain than the tows. Therefore, in terms of increasing strain 

along the fill direction, the warp tows, pure resin, and finally the fill tows are degraded. The 

tensile stress-strain curve displays some oscillatory behavior at the end of the simulation, when 

both the strain rate and the tensile strain at high, mainly in Fig. 19 (d) and barely noticeable in 

Fig. 18 (top curve).  

At the applied strain rates in this study, the Poisson’s ratio of the epoxy resin and glass fiber 

show no rate dependency. The experimental results on the UD glass/epoxy composite presented 

in this paper and those reported in [19] are of the same order of magnitude. The strain rate range 

used in this work is limited by the testing machine’s limit speed of 3000 mm/min. Prediction and 

validation of this model at higher strain rates requires more capable equipment that is not 

available to us.  
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(c)                                                                (d) 
Fig. 23. Comparison of the present model and experimental results of the WF composite 

 

Table 12. Comparison of experimental and predicted mechanical properties  

 Initial modulus [GPa] Ultimate strength [MPa] 

Strain rate (s-1) Experimental Prediction Error [%] Experimental Prediction Error [%] 

42.38 10−  25.043 26.30 5.0 460.69 492.5 6.9 

32.38 10−  25.661 26.49 3.2 505.21 541.0 7.1 

22.38 10−  26.208 26.88 2.6 546.34 591.7 8.3 

11.59 10−  27.059 27.36 1.1 606.75 665.6 9.7 

12.38 10−  28.15 28.52 1.3 649.17 685.1 5.5 
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The fractured tensile specimens are presented in Fig. 24. Each specimen is related to a specific 

tensile strain rate. The crack initiation and propagation is normal to the load direction within the 

gage length. The fracture line is almost straight. There is no load eccentricity that creates 

bending moment in the specimens. The specimen of Fig. 24 (A) of strain rate 42.38 10−  was 

painted with black color, and there are white spots over the surface of specimen. The white spots 

belong to the small cracks and matrix plasticity in the transverse composite tows that happened 

prior to the final failure. There is no significant damage in the transverse composite tows and 

they have not lost their strength with the initial failure. This proves the degradation method 

which indicates the modulus of the transverse composite tows should reduce gradually. 

 

Fig. 24. Failed specimen of different tensile strain rates 

 

5.2.2. Effects of out-of-plane stresses 

Under tensile loading along the X direction, Figs. 1 and 2, the warp composite tows are subjected 

to the in-plane transverse tensile stress along the material coordinate 2w , while the fill composite 

tows are subjected to the stress along the material coordinates 1f , 3 f  and 13 f . The model 

predicts that the presence of the normal and shear stresses in the direction of 3 f  and 13 f  should 

cause the separation of warp and fill composite tows and reduce the strength of the WF 

composite. The maximum of these stresses occur at the intersection of warp and fill tows where 

the fill undulation angle f  is maximum, Fig. 25. The predicted stress-strain curves related to the 

out-of-plane normal and shear stresses applied to the fill composite tow at different strain rates 

are presented in Fig. 26. It is observed that the out-of-plane stresses have sufficient values to 

create debonding between warp and fill tows and surpass the interface strength. Those values 

should increase with increasing strain rate. The interface strength is provided by the polymeric 

matrix material that has tensile and shear strength according to the Fig. 8 (a) and (b).  
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Fig. 25. Maximum of undulation angle in the fill tow 
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(c)                                                                (d) 
Fig. 26. (a) to (d) out-of-plane normal and shear stress-strain curves of fill composite tows at different 

strain rates  

Transverse and out-of-plane shear stresses induced in the composite tows are calculated and 

included in the failure model, but according to the experimental observations in Fig. 24, there is 

no significant damage prior to the final failure of the longitudinal composite tows. It appears that 

under the conditions of this study, no significant fiber-matrix and tow-matrix interface 

debonding are apparent, and thus interface debonding is not included in the predictive model 

presented herein. 
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6. Conclusions 

In the present study, a novel model with progressive damage model was developed to analyze the 

nonlinear rate-dependent behavior of the WF composite. A micro-meso-scale (MMS) model was 

developed to predict the rate-dependent behavior of the WF composite, and to consider 

nonlinearity of the WF composite due to the undulated geometry and nonlinear material 

behavior. The viscoelastic fiber and viscoplastic matrix were combined to create UD composite 

tow with viscoplastic behavior. The micro-scale model determined the effect of rate-dependency 

in the fiber and matrix, and nonlinearity of the matrix on the viscoplastic behavior of composite 

tows. Furthermore, with implementation of the geometrical characteristics and stacking sequence 

of the composite tows in the meso-scale model, a WF composite with anisotropic viscoplastic 

behavior was concluded. At each differential step, the viscoplasticity of the matrix and 

viscoelasticity of the fiber were updated, and subsequently, the viscoplasticity of the composite 

tows and the WF composite were updated. 

A strain-rate-dependent progressive damage model was developed to assess the effect of matrix 

cracking on the prediction of the stress-strain curves of the WF composite. The progressive 

damage model detected the onset of failure in the sub-elements and reduced their relevant 

stiffness matrices. Then, the stiffness matrices of the element and RVE were updated and the 

applied load was redistributed over the undamaged regions. A series of the experimental tests 

were performed at various strain-rate on the polymer matrix and UD composite to derive the 

viscoplastic model constants. To verify the MMS model, tensile tests at different strain-rates 

were carried out on the WF composite. Based on the analytical and experimental investigations, 

the following observations are noted: 

• The initial modulus and ultimate strength values as predicted by the MMS model at various 

strain rates were in line with experimental results. 

• The MMS model predicts the nonlinearity of the experimental stress-strain curves at various 

strain rates by considering the effects of the material and geometrical properties in the micro- 

and meso-scale model. 

• The rate-dependency of the WF composite is due to the different rate-dependency of the fiber 

and matrix. Their behavior and load-share are integrated in the micro-scale model. The resultant 

rate-dependency viscoplastic composite tows are integrated in the meso-scale model. 

• The nonlinearity of the WF composite is due to the nonlinear behavior of the matrix, the 

geometrical features of the woven fabric, and the potential damage that may occur in the micro- 

and meso-scale models. 

• The experimental results of the fracture patterns of the WF composites show that there is no 

significant damage in the transverse composite tows prior to the final fracture. The damage is 

smoothly propagated over the specimens and leads to a fracture plane in the middle of the 

specimens, perpendicular to the load direction. 

• The proposed model can be implemented in a finite element framework. 
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