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Abstract

Progressive Damage Analysis is a constitutive model available in Abaqus(TM) to predict damage
initiation and evolution in laminated composite materials but no standards are available to obtain
the required material properties. A novel methodology is proposed to determine the material
properties for Carbon/Polymer composites, relying on crack-density data. Since PDA does not
predict crack density, direct correlation of data with PDA predictions is not possible. Therefore,
another constitutive model is used to estimate modulus-reduction as a function of measured crack
density. Then, PDA material properties are determined using the calculated modulus-reduction
data. Applicability to several material systems is presented.
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1 Introduction

Well-designed laminated composites do not fail suddenly but rather develop microscopic progressive
damage that leads to changes in macroscopic material response, such as matrix cracks, modulus-
reduction, and failure. Simulation techniques are able to predict damage initiation and evolution
as a function of service conditions. For instance, the predictive capability of Progressive Damage
Analysis (PDA) relies on material properties to characterize the ability of the composite to delay
onset and progression of damage [1–4]. Although data and standard methods exist to measure
elastic moduli (e.g., ASTM D3039), data and methods do not exist for damage-related proper-
ties. Experimental data displaying macroscopic effects of damage (e.g., modulus-reduction) exist
for Glass/Polymer composites but not for Carbon/Polymer composites due to the difficulty for
measuring modulus-reduction for the later. However, data and methods to measure crack density
vs. applied stress or applied strain exist for Carbon/Polymer material systems [5–8] and they are
sufficiently standardized to be used for other material systems. Unidirectional-lamina strength data
and standard test methods to measure them also exist, but once the lamina is embedded into a lam-
inate, in-situ correction is needed for the transverse tensile and in-plane shear strength [9, § 7.2.1].
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Such correction depends on the intralaminar energy release rate in modes I and II, but no standard
tests methods exist to measure the later.

The purpose of this study is to develop a methodology to obtain the missing material proper-
ties by adjusting their values so that the predicted material response matches experimental data.
Once the material properties are obtained, the simulation predictions are compared to a broad
set of Carbon/Epoxy laminates with different laminate stacking sequences. Initially, the proposed
method relies on availability of modulus-reduction vs. applied load or strain. As it was pointed out
in [1], such data is easy to obtain for Glass/Polymer composites, where the stiffness of the matrix
has a noticeably effect on the stiffness of the composite, but Carbon fibers are so stiff that the
degradation of the matrix may go unnoticed during modulus-reduction measurements. The sensi-
tivity of modulus-reduction to damage varies depending on the laminate stacking sequence (LSS),
as reported in [10]. Even for laminates having a high proportion of 90o laminas, such as [0/902]S to
[0/904]S , the modulus-reduction is in the range 0–5% to 0–15% approximately, making it difficult
to measure accurately, specially at early stages of damage. For other LSS, such as quasi-isotropic,
modulus-reduction is even less, because off-axis laminas say (e.g., ±45, ±60, etc.) damage less that
transverse laminas (90o) and longitudinal plies (0o) often do not damage at all. For this reason,
modulus-reduction data for Carbon/Polymer composites is difficult to find in the literature.

A more direct measure of damage, i.e., crack density (cracks/mm), is often reported in the
literature [5–8, 11–14], but PDA does not calculate crack density and thus cannot be compared
directly to crack-density data. To solve this problem, a novel data processing method is proposed
to derive modulus-reduction in terms of available crack-density data using an intermediate damage
mechanics model [15] that uses crack density data to predict modulus-reduction. Then, the derived
stiffness data is used to obtain the material properties needed for using PDA in Abaqus.

2 Progressive Damage Analysis (PDA)

The Abaqus PDA model is a generalization of an interlaminar decohesion model [2, 3]. It assumes
linearly elastic behavior of the undamaged material and it is used in combination with Hashin’s
damage initiation criteria [16].

2.1 Damage initiation

Abaqus assumes linear elastic behavior of the undamaged material until damage initiates. Damage
initiation is predicted using Hashin’s failure criterion for each mode (fiber tension, fiber compression,
matrix tension, matrix compression). The four different damage initiation mechanisms, which can
be coupled or uncoupled, are defined as follows.

I. Fiber tension (σ11 ≥ 0) is controlled by the longitudinal tensile strength of the unidirectional
lamina F1t and a correction to take into account fiber shear failure, as follows

Itf =

(
σ11
F1t

)2

+ α

(
σ12
F6

)2

(1)

II. Fiber compression (σ11 < 0) is controlled by the longitudinal compressive strength of the
unidirectional lamina F1c [17] as follows

Icf =

(
σ11
F1c

)2

(2)
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III. Matrix tension and/or shear (σ22 ≥ 0), which is dominated by matrix cracks driven by a
combination of transverse tensile and in-plane shear stress, as follows

Itm =

(
σ22
F2t

)2

+

(
σ12
F6

)2

(3)

IV. Matrix compression (σ22 < 0), which results in shear-compression failure of the matrix

Icm =

(
σ22
2F4

)2

+

[(
F2c

2F4

)2

− 1

]
σ22
F2c

+

(
σ12
F6

)2

(4)

where σij are the components of the stress tensor; F1t and F1c are the tensile and compressive
strengths in the fiber direction; F2t and F2c; are the tensile and compressive strengths in the trans-
verse direction; F6 and F4 are the longitudinal and transverse shear strengths, and α determines
the contribution of shear stress to the fiber tension mode. To obtain the model proposed by Hashin
and Rotem [16] we set α = 0 and F4 = (1/2)F2c. Furthermore, Ift, Ifc, Imt and Imc are the failure
indexes that indicate whether a damage initiation criterion has been satisfied for any damage mode.
The onset of damage occurs when any of the indexes exceeds the value 1.0.

Note that the strength values are material properties that must be provided by the user. Due to
differences between testing of the unidirectional composite and application conditions, the strength
values measured by standard methods do not match accurately with the onset of damage. For
accurate prediction of damage onset, the transverse tensile and shear strength values (F2t, F6)
must be replaced by the so called in-situ strength of unidirectional lamina for transverse tensile
strength (F is2t ) and shear strength (F is6 ). In other words, once a lamina is embedded in a laminate,
it behaves as if it were stronger than the unidirectional lamina [9, section 7.4]. However, FEA
commercial codes do not distinguish between in-situ and nominal strength values. There are two
alternatives to obtain the in-situ values. One is to calculate them in terms of lamina strength and
thickness values [9, section 7.4]. The other is to adjust the values using laminate experimental data,
as proposed in this work.

Once damage starts, the effect of damage is taken into account by updating the values of stiffness
tensor of the lamina [4] as follows

σ = C : ε (5)

where σ is the apparent stress, ε the strain, C the damaged stiffness matrix, and : denotes a tensor
double contraction. In addition, the damaged stiffness matrix can be written in terms of damage
variables as follows

C =

 (1− df )E1/∆ (1− df )(1− dm)ν21E1/∆ 0
(1− df )(1− dm)ν12E2/∆ (1− dm)E2/∆ 0

0 0 (1− ds)G12

 (6)

∆ = 1− (1− df )(1− dm)ν12ν21

ds = 1− (1− dtf )(1− dcf )(1− dtm)(1− dcm)

where E1 and E2 are the moduli in fiber and matrix direction, G12 is the in-plane shear modulus,
ν12 and ν21 are the Poisson’s ratios, and dtf , dcf , dtm, dcm and ds are the damage variables for fiber,
matrix, and shear damage modes in tension and compression respectively. Note that the shear
damage variable ds is not independent; namely it depends of the remaining damage variables.
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The damage variables for fiber and matrix in tension and compression, dtf , dcf , dtm and dcm,
correspond to the four damage initiation modes given by equations (1-4). At any instant of time,
each variable is updated according whether it is in tension or compression as follows

df =

{
dtf if σ11 ≥ 0

dcf if σ11 < 0
(7)

and

dm =

{
dtm if σ22 ≥ 0
dcm if σ22 < 0

(8)

Abaqus PDA uses the model proposed by Matzenmiller et al. [3] to compute the degradation
of stiffness matrix coefficients. The equations (1-4) are then used as damage evolution criteria by
substituting effective stresses σ̃ for Cauchy stress σ in (1-4). The relationship between the effective
stress σ̃ and the Cauchy stress σ is given by [18]

σ̃ = M−1 : σ (9)

and the damage effect tensor in Voigt notation is given as

M−1 =

 (1− df )−1 0 0
0 (1− dm)−1 0
0 0 (1− ds)−1

 (10)

Prior to damage initiation, the damage effect tensor M−1 is equal to the identity matrix, so
σ̃ = σ. Once the damage has started for at least one mode, the damage effect tensor becomes
significant also in the criteria for damage initiation of other modes through (1-4). When df = 0
and dm = ds = 1, equation (10) represents the ply discount method.

2.2 Damage evolution

Once any damage initiation criteria is satisfied, further loading will cause degradation of material
stiffness. The evolution of the damage variable employs four critical energy-dissipation values Gci ,
which correspond to each damage mode: fiber tension (i = ft), fiber compression (i = fc), matrix
tension (i = mt) and matrix compression (i = mc). So, in addition to six strength values, four
critical energy-dissipation properties must be provided. The area of the triangle OAC in Figure 1
represents the critical energy-dissipation for mode III (3).

Usually the constitutive model is expressed in terms of stress-strain, but when the material
exhibits strain-softening behavior, as shown in Figure 1 along line AC, such formulation produces
strong mesh and element-type dependent results, while in reality the actual composite behaves
the same regardless of what mesh or element is used to model it. In order to alleviate the mesh
dependency, PDA uses a characteristic length (Lc) to transform the PDA constitutive model from
stress-strain to strain-displacement by computing the product δ = ε Lc. Using the characteristic
length relieves some but not all of the mesh dependency. Furthermore note that PDA does not
resolve the actual cracks in the composite, the crack density is not calculated, and only the reduction
of stiffness can be calculated in terms of damage variables. Unfortunately, the damage variables
cannot be measured experimentally, but only inferred from modulus-reduction.

The evolution of damage variables is governed by an equivalent displacement δeq shown in
Figure 1. In this way, each damage mode is represented as a 1D stress-displacement problem.
The equivalent displacement for each mode is expressed in terms of the effective stress components
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used in the initiation criterion for each damage mode. Such 1D displacements and 1D stresses are
defined as follows [4]:

Fiber tension (σ11 ≥ 0)

δeqft = Lc
√
〈ε11〉2 + αε212 (11)

σeqft =
〈σ11〉〈ε11〉+ ασ12ε12

δeqft/L
c

Fiber compression (σ11 < 0)
δeqfc = Lc〈−ε11〉 (12)

σeqft =
〈−σ11〉〈−ε11〉

δeqfc/L
c

Matrix tension and/or shear (σ22 ≥ 0)

δeqmt = Lc
√
〈−ε22〉2 + ε212 (13)

σeqmt =
〈σ22〉〈ε22〉+ σ12ε12

δeqmt/L
c

Matrix compression (σ22 < 0)

δeqmc = Lc
√
〈−ε22〉2 + ε212 (14)

σeqmc =
〈−σ22〉〈−ε22〉+ σ12ε12

δeqmc/Lc

where 〈〉 represents the Macaulay operator defined as 〈η〉 = 1
2 (η + |η|) for every η ∈ <.

For each mode, the damage variable varies from zero (undamaged) to one (totally damaged).
The damage variable for a particular mode is derived using Figure 1 as follows

d =
δeqc (δeq − δeqo )

δeq(δeqc − δeqo )
(15)

where δeqc is the maximum value of δeq at point C in Fig 1, for each mode.
In PDA, a material point is initially stressed and strained along the linear elastic line OA

in Fig. 1, with a initial structural stiffness E/Lc given by the slope of line OA until the stress
reaches the in-situ strength (point A). In-situ transverse tension and in-plane shear are larger than
nominal strength values [9, section 7.2.1]. In-situ values can be obtained (adjusted) by matching
PDA model predictions to the initiation of laminate modulus-reduction data. One starts with the
known unidirectional value as initial guess, and lets the optimization algorithm adjust the in-situ
strength until a match is found (Section 4).

After point A the material undergoes progressive damage and stress softening, i.e., due to
damage, the value of stress goes down along line ABC. If the load is released at B, the material
returns to the origin following an elastic-damaged path with reduced structural stiffness given
by the slope of BO. The area OAC represents dissipated energy per unit crack area Gcmt when
the material is 100% degraded. No experimental method exists for measuring Gcmt, but it can be
evaluated indirectly by adjusting its value so that predicted laminate stiffness matches the evolution
of laminate modulus-reduction data (Section 4).
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Figure 1: Energy-dissipation property for one damage mode.

3 Modulus-reduction Data

In this section, experimental data of crack density vs. applied strain or applied stress is used to cal-
culate the damage material properties for the discrete damage mechanics DDM model [15] as well
as to generate the modulus-reduction data that it is needed to adjust the PDA material properties
introduced in Section 2. Measuring changes of longitudinal modulus vs. applied strain is almost
impossible for Carbon-based composites because the stiffness of the fibers dominates the stiffness
of the laminate regardless of what happens to the matrix. Often, experimental errors are of the
same order of magnitude of the modulus-reduction, thus compromising the reliability of experi-
mental data. Instead, different alternatives to characterize damage progression in Carbon/Polymer
composites have been reported in the literature [5–8].

Crack density λ vs applied strain εx or applied stress σx = Nx/t, has been measured experi-
mentally. None of the laminas in the laminates used in the experiments were subjected to fiber
or matrix mode compression (equations (2) and (4)). However, crack density cannot be compared
and matched with PDA predictions because PDA does not calculate crack density. The solution
proposed herein is to calculate modulus-reduction data using another constitutive model that calcu-
lates crack density and thus can be compared to crack density data. Once the modulus-reduction
data has been generated, it is then used to adjust the material properties for PDA through an
optimization process (Section 4).

A discrete damage mechanics model (DDM) [15] was chosen to generate modulus-reduction
data. DDM is implemented as a user general section (UGENS) in Abaqus [18]. The material
properties of the discrete damage mechanics (DDM) constitutive equation can be adjusted by
comparing DDM predictions of crack density with experimental crack-density data, which is either
available [5–7] or can be obtained by established methods [8]. The material property determination
for DDM is performed by executing a Python optimization script that adjusts the properties to
minimize the error between predictions and experimental crack density data. The script runs
inside Abaqus/CAE to calculate crack density and modulus-reduction, via DDM, as required by
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the optimization algorithm. The error while adjusting DDM properties is calculated as

Error =
1

N

√√√√ N∑
i=1

(
λ|Abaqusε=εi

− λ|Experimentalε=εi

)2
(16)

where λAbaqus and λExperimental are the calculated and measured values of crack density for each
value of applied strain εi, respectively, and i = 1...N correspond to the available experimental data
points.

DDM requires just two properties, the true energy release rates (ERR) in modes I (crack
opening) GcI and II (crack shear) GcII . Note that the fracture energy Gcmt in PDA is not true 3D
ERR and thus it is not numerically equal to GcI or GcII or any combination thereof. The reason
for this discrepancy is due to the fact that PDA transforms the 3D problem into a 1D problem by
equations (11-14).

When laminates with 0o or 90o laminas are subjected to uniaxial extension, the laminas are
not subjected to any shear, so damage initiation and evolution are both controlled by GcI (crack
opening mode I). On the other hand, when laminates with ±θo laminas are subjected to uniaxial
extension, both traction and shear may appear, so damage initiation and evolution are controlled
by both GcI and GcII . DDM not only calculates the crack density but also the modulus-reduction
of the laminate, thus providing the data needed for adjusting the properties needed for PDA.

Once the modulus-reduction data E/Ẽ has been generated, the PDA properties can be adjusted
by minimizing the PDA error as follows

Error =
1

N

√√√√ N∑
i=1

(
E

Ẽ

∣∣∣∣Abaqus
ε=εi

− E

Ẽ

∣∣∣∣Data
ε=εi

)2

(17)

where E, Ẽ, are the damaged and undamaged modulus for applied strain εi, respectively, and N
is the number of data points.

The methodology proposed in this section is applied next to generate modulus-reduction data
E/Ẽ for several material systems. Such data is then used in Section 4 to adjust the material
properties required by PDA.

All the laminates considered in this study are symmetric and balanced. Therefore a quarter
of the specimen was used for the analysis using symmetry b.c. and applying a uniform strain
via imposed displacements to one end of the specimen. The dimensions of the specimens are 12
mm wide with a free length of 150 mm, except when noted otherwise. Furthermore, the DDM
predictions are insensitive mesh density and type of element used, namely linear S4R or quadratic
S8R, so a one-element mesh with either type of element can be used. The ply material properties
are listed in Table 1.

3.1 IM6/Avimid R©K Polymer

Crack density λ vs applied stress σx measured experimentally [5] are used to adjust the DDM prop-
erties GcI , G

c
II and then generate modulus-reduction data for IM6/Avimid-K laminates. Laminate

#2 in Table 2 was used to adjust GcI because it shows the strongest mode I fracture behavior of
the group [19]. The calculated value GcI is reported in Table 3. Note that there are no laminates
subjected to shear reported in [5], so GcII cannot be calculated from the data available. Compar-
ison between crack density predicted by DDM and experimental data is shown in Figure 2. The
modulus-reduction generated by DDM for [0/903]s laminate IM6/Avimid-K is reported in Figure
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Figure 2: DDM model prediction and crack density data in [0/903]s laminate IM6/Avimid R©K
Polymer.

3, denoted as ”generated modulus-reduction data”. This data will be used in Section 4 to calculate
the material properties required by PDA.

3.2 T300/Fiberite 934

Crack density λ vs applied stress σx measured experimentally [5] (Figure 4) are used to adjust
the DDM properties GcI , G

c
II and then generate modulus-reduction data for T300/934 laminates.

Laminate #9 in Table 2 was used to adjust GcI because it shows the strongest mode I fracture
behavior of the group [19]. The calculated value GcI is reported in Table 3. Note that there are no
laminates subjected to shear reported in [5], so GcII cannot be calculated from the data available.

3.3 AS4/Hercules 3501-6

Crack density λ vs applied stress σx measured experimentally [5] are used to adjust the DDM
properties GcI , G

c
II and then generate modulus-reduction data for AS4/3501-6 laminates. Laminate

#10 in Table 2 was used to adjust GcI because it shows the strongest mode I fracture behavior of
the group [19]. The calculated value GcI is reported in Table 3. Note that there are no laminates
subjected to shear reported in [5], so GcII cannot be calculated from the data available.

Comparison between crack density predicted by DDM and experimental data is shown in Figure
5. Simultaneously, the modulus-reduction generated by DDM for [0/904]s laminate AS4/3501-6 is
reported in Figure 3. This data will be used in Section 4 to calculate the material properties
required by PDA.

In Figure 5, the effect of crack saturation is likely responsible for the difference because crack
saturation is no accounted for the DDM model. As crack density approaches one crack per mm
(λ = 1.0/mm), cracks become too close to each other, closer than the shear lag distance [10]
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Figure 3: Modulus reduction generated by DDM for several material systems: [0/903]s laminate
IM6/Avimid R©K Polymer, [02/904]s laminate T300/Fiberite 934, [0/902]s laminate AS4/Hercules
3501-6 and [0/904]s laminate IM7/MTM45-1.

Figure 4: DDM model prediction and crack density data in [02/904]s laminate T300/Fiberite 934.
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Figure 5: DDM model prediction and crack density data in [0/902]s laminate AS4/Hercules 3501-6.

required for the intralaminar shear to transfer the stress from one crack to the next. This effects
slows down the experimental crack density vs. strain rate with respect to the predicted one.

3.4 IM7/MTM45-1

Crack density λ vs applied strain εx measured experimentally [8] are used to adjust the DDM prop-
erties GcI , G

c
II and then generate modulus-reduction data for IM7/MTM45-1 laminates. Laminate

#12 in Table 2 was used to adjust GcI because it shows the strongest mode I fracture behavior of
the group. In the same way, laminate #14 was chosen because it shows a strong shear component,
thus the strongest mode II fracture behavior. The DDM properties that yield the best match to
crack density data are reported in Table 3.

Comparison between crack density predicted by DDM and experimental data [8] is shown in
Figure 6 and 7 for [0/904]s and [0/± 554/01/2]s laminate IM7/MTM45-1, respectively. The dimen-
sions of these specimens are 19 mm wide with a free length of 270 mm. The ply material properties
are listed in Table 1. Modulus-reduction generated by DDM for [0/904]s laminate IM7/MTM45-1
is illustrated in Figure 3, denoted as ”generated modulus-reduction data”. This data will be used
in Section 4 to calculate the material properties required by PDA.

In Figure 6 for [0/904]S , discrepancies are observed after 1.13 % strain. At that strain, it is
likely that fiber failures start to weaken the laminate, thus accelerating matrix cracking beyond
that predicted by the model, while the crack density is still too low for the results to suffer from the
effects of crack saturation. Since the laminate [0/± 55/0/± 55/0] in Figure 7 has no 90o laminas,
but instead has ±55o laminas that are less susceptible to cracking, discrepancies are not observed
until about 1.38 % strain. At that strain, it is likely that fiber failures start to accelerate matrix
cracking beyond that predicted by the model, while the crack density is still too low for the results
to suffer from the effects of crack saturation.
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Figure 6: DDM model prediction and crack density data in [0/904]s laminate IM7/MTM45-1.

Figure 7: DDM model prediction and crack density data in [0/±554/01/2]s laminate IM7/MTM45-
1.
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Figure 8: PDA model prediction vs. longitudinal modulus from derived data. Gcmt is adjusted in
mode I for [0/904]s IM7/MTM45-1.

4 Adjust PDA Material Properties

In this section, the modulus-reduction data generated in Section 3 is used to adjust the material
properties in PDA, which are: the in-situ transverse tensile strength F is2t , the in-situ shear strength
F is6 , and the PDA fracture energy Gcmt. These properties are determined so that the PDA prediction
are as close as possible to the data.

In-situ values (F is2t , F
is
6 ) are adjusted until the PDA predictions match the initiation of modulus-

reduction data (e.g., between 0.6 and 0.7 % applied strain in Fig. 8). The nominal in-situ strength
values of the unidirectional lamina (F2t, F6) are used as initial guess for optimization. PDA’s
fracture energy (Gcmt) is adjusted until the PDA prediction matches the modulus-reduction data
(see Fig. 8). The critical energy release rate (ERR) for interlaminar damage of a similar material
system is used as initial guess for optimization.

For IM7/MTM45-1 (Section 3.4), the [0/904]s laminate is analyzed first to adjust both F is2t and
Gcmt by minimizing the error between the PDA-predicted values and the modulus-reduction values
obtained in Section 3.4. Next, any laminate with laminas ±θ close to ±45o is useful to adjust F is6
while Gcmt and F is2t are kept unchanged. A [0/±554/01/2]s laminate was used to adjust F is6 . Results
are shown in Table 4. The number of modulus-reduction data points has a little impact on the
values obtained for the PDA properties as long as the stiffness degradation of the lamina is well
represented (see Fig. 8).

Modulus versus the applied strain are shown in Fig. 8 and 9 for two IM7/MTM45-1 laminates.
For laminate [0/904]s in Fig. 8, PDA results fit the experimental data nicely. For [0/± 554/01/2]s
in Fig. 9, the error is larger. The discrepancy can be explained as follows. PDA does not include
dissipation energy due to shear separately from transverse tension, but rather both are lumped into
one term, i.e., Gcmt. Thus PDA struggles when both modes, traction and shear, are combined in
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Figure 9: PDA model prediction vs. longitudinal modulus from derived data. Gcmt is adjusted in
mode II for [0/± 554/01/2]s IM7/MTM45-1.

[0/± 554/01/2]s. Note also that the in-situ shear strength F is6 should match the onset of laminate
modulus-reduction data. Instead, F is6 is adjusted (by the optimization algorithm) to start cracking
at a higher strain than that shown by the data (open circles in Fig. 9). This is because the opti-
mization function seeks to reduce the error (17) between the data points and the PDA prediction.
Thus, increasing slightly the F is6 value, reduces the error produced by the rest of modulus-reduction
data points which belong to the AC side in Fig. 1. This would probably not happen if a shear
dissipation energy parameter were computed separately from Gcmt, but PDA does not have such
parameter in its formulation.

Modulus versus applied strain are shown in Fig. 10-12 for IM6/Avimid (Section 3.1), T300/Fiberite
934 (Section 3.2), and AS4/Hercules 3501 (Section 3.3). For IM6/Avimid, laminate #2 was chosen
to fit PDA results with modulus-reduction data as is illustrated in Fig. 10. The modulus reduction
simulated using PDA matches nicely with experimental values and thus, obtaining a good Gcmt
adjusted to predict damage initiation and evolution.

For T300/Fiberite 934 and AS4/Hercules 3501, laminate #9 and #10 were chosen to fit with
modulus-reduction data as shown in Fig. 11 and 12, respectively. For Figures 11 and 12, a significant
deviation can be appreciated between experimental data and the modulus reduction using PDA.
This difference is due to the PDA formulation (Figure 1). Once the in-situ strength F is2t is fixed to
predict the onset of damage according with the Hashin criteria (Section 2.1), only one point in the
triangle need to be adjusted to obtain the Gcmt. This step is critical not only to calculate the final
value but also it will set the modulus reduction rate for a specific material system. According to
PDA formulation, crack density reaches saturation before DDM predictions, obtaining a damage
variable equal to unit value. According to both PDA and DDM, no fiber breakage is predicted,
thus reaching 1.08 % and 1.2 % of applied strain for #9 and #10 laminates, respectively. Note
that strains higher than those shown in Figures 11 and 12 are not advisable in design, since other
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Figure 10: PDA model prediction vs. longitudinal modulus from derived data. Gcmt is adjusted in
mode I for [0/903]s IM6/Avimid R©K Polymer.

types of damage, such as fiber failure, may occur.

5 In-situ strength

The in-situ strength values can be calculated as shown in Section 4. Alternatively, they could be
calculated with the methodology presented in [9, section 7.2.1]. Assuming a transition thickness
tt = 0.8 mm [20], for each of the four material systems the following calculations are performed
and the results are shown in Table 5. The effective thickness is

te = min(tt, tk) (18)

where tk is the thickness of the cracking lamina. Then, the in-situ values are calculated as follows:

F is2t = 1.12 F2t

√
2 tt
te

(19)

F is6 = F6

√
2 tt
te

(20)

where F2t and F6 are the unidirectional ply strength (Table 1). The comparison is shown in Table
5. Calculated values are accurate for only two of the four laminates. Therefore, adjusting them
with the methodology proposed herein is a better choice when crack-density data is available.

6 Convergence and Mesh Sensitivity

The mesh sensitivity of Abaqus PDA is analyzed through h- and p- refinement, namely, mesh
refinement and interpolation order (type of element). Since the laminate is subjected to uniform
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Figure 11: PDA model prediction vs. longitudinal modulus from derived data. Gcmt is adjusted in
mode I for [02/904]s T300/Fiberite 934.

Figure 12: PDA model prediction vs. longitudinal modulus from derived data. Gcmt is adjusted in
mode I for [0/902]s AS4/Hercules 3501.
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Figure 13: Force vs applied strain for laminate 12 as function of number of elements.

strain, the stress fields should converge independently of mesh refinement. However, the softening
material behavior is mesh dependent, as it was mentioned in Section 2.2. Such mesh dependency
can be observed in Fig. 13 and 14. The PDA softening force-displacements assumption (line ABC
in Fig. 1) yields different results depending on the size of the elements as it can be seen in Figure
13. Consequently, the stiffness increases slightly with the number of elements, thus showing mesh
dependency as shown in Fig. 14. Note that PDA material properties were adjusted using the data
labeled “derived data” in Fig. 14, using a one-element discretization with one S8R element for
the entire specimen. Despite the fact that the state of strain is uniform in the entire specimen,
the normalized modulus seems to increase as the mesh is refined. Note that mesh refinement has
no effect on the predicted strain because the strain is uniform for the whole specimen and the
stress is uniform in each lamina. Any deviation in normalized modulus is due exclusively to mesh
dependency of the PDA constitutive model.

The result of p-refinement, that is comparing S4R (linear interpolation) to S8R (quadratic
interpolation) element types is shown in Figure 15. Using the properties adjusted with one S8R
element into a simulation using one S4R element, sudden degradation of stiffness is observed with
S4R. To solve this problem, one could use a finer mesh of S4R elements and/or find new values
of the PDA material properties specifically adjusted for S4R. Such values as reported in Table 4
(using one S4R element). But this situation is very inconvenient for the user, who would be forced
to change the values of the material properties depending on what type of element he wishes to
use.
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Figure 14: PDA model prediction vs. longitudinal modulus from [0/904]s laminate as function of
number of elements.

Figure 15: PDA model prediction vs longitudinal modulus from laminate [0/904]s as function of
type of element.
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7 Conclusions

The material properties F is6 and F is2t are in-situ strength values that cannot be measured by direct
experimental methods. The fracture energy Gcmt cannot be measured directly either. Thus, an in-
direct method is proposed here. For Glass/Polymer composites, a straightforward approach can be
followed for determination of these properties, by simply adjusting their values to minimize the dif-
ference between predicted and measured stiffness-reduction of the laminates. For Carbon/Polymer
composites, a more elaborate method is needed because experimental modulus-reduction data for
Carbon/Polymer has too low signal/noise ratio. To solve this problem, the properties of the DDM
constitutive model are adjusted to minimize the difference between predicted and experimental
crack density data. Then, DDM is used to calculate modulus-reduction for those laminates. Fi-
nally, the calculated modulus-reduction is used to obtain the PDA properties by simply adjusting
the PDA properties to obtain a good prediction of the modulus-reduction data. Using the proposed
methodology, properties are calculated for four different material systems and subsequent predic-
tions match observed behavior accurately. However, some shortcomings of PDA are observed. The
results predicted by PDA are sensitive to mesh density and element-type used as was shown in Fig.
13, 14, and 15. Also, PDA properties vary depending on type of element used (Table 4). These are
evidence of mesh sensitivity, also called lack of objectivity. Furthermore, lack of shear dissipation
energy in PDA makes it difficult for PDA to accurately predict the response of laminates where
damage is due to mainly in-plane shear. This is notable for laminates with cracking laminas close
to 45 and for laminates without laminas at 90 (Fig. 9). These shortcomings cannot be ameliorated
without modifying the PDA formulation and associated source code, which is not accessible in
commercial codes such as Abaqus.

Appendix. Software Installation

Math libraries (Scipy and Numpy) are needed to perform elemental and advanced math operations
required for optimization. Installation of these libraries to extend Abaqus functionality is described
as follows:

• Determine the Phyton (� import sys) and Numpy version (� import version) using the
windows command for the installed version of Abaqus.

• Install the correct Python version determined previously. Onwards, any necessary library
to be used by Abaqus except Numpy library must be first installed in the Python folder.
Note that the Numpy library is already installed in Abaqus by default, so the Numpy version
cannot be changed.

• Install the Scipy library version that works with the Numpy version already installed by
Abaqus in the correct OS (32 or 64 bit), which by default is installed in the Python folder.
For instance, Abaqus 6.14 (64 bit) works with Python 2.7, which works with the Scipy library
compatible with Numpy 1.6.2 (64 bit). The Scipy library contains the optimization and
advanced mathematical functions.

• Once the Scipy library is installed in Python folder, it must be copied/moved to the Abaqus
library folder. After that, it is possible to import any function from Scipy library. This
procedure can be followed for any other type of library if needed.

The rest of the problem is limited to write three Abaqus scripts (available as supplemental
material for this paper) and run them directly from CAE. Each script plays an important role and
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must be located in the same folder as the Abaqus work directory. Then, each script can be called
through the import command. The functionality of each script is described as follows:

• In the first script, all Abaqus customized libraries are imported. A new class model, which
constructs functions to set up, run, and get results from Abaqus, is defined. The first two
functions set up the geometry, properties, composite lay-out, bc, meshing, and creates an
Abaqus job. The last function gets the predicted response XY data. Note that these results
are kept in a temporary file that must be erased at the end of each iteration to avoid storing
multiple results with same variable name.

• The objective error function through equation (16) to match laminate stiffness degradation
data is defined in the second script. Note that the experimental data are written inside the
code to reduce execution time, and the class model from Script1 is imported. Note that the
error function is named Iteration in Script2.

• Finally in the third script, the error function is imported from Script2 and the optimization
problem is solved using the fmin function from Scipy. Then, options and tolerances are
adjusted, and the results (function value, number of iterations and function evaluations)
are printed on the Abaqus window. Only Script3 must be run from Abaqus to start the
optimization.
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Table 1: Unidirectional ply properties for laminates IM6/Avimid K, T300/Fiberite 934,
AS4/Hercules 3501-6 and IM7/MTM45-1 [5, 8, 18,21].

Property IM6/Avimid K T300/Fiberite 934 AS4/Hercules 3501-6 IM7/MTM45-1

E1 [GPa] 134.0 128.0 130.0 157.9
E2 [GPa] 9.8 7.2 9.7 7.7
G12 [GPa] 5.5 4.0 5.0 3.6
G23 [GPa] 3.6 2.4 3.6 2.7
ν12 0.300 0.300 0.30 0.360
ν23 0.361 0.501 0.347 0.400
α1 [µε/K] -0.09 -0.09 -0.09 -5.5
α2 [µε/K] 28.8 28.8 28.8 28.5
Ply thickness [mm] 0.144 0.144 0.144 0.14

F1t [MPa] 2326 1500 1950 2465
F2t [MPa] 37 27 48 52
F1c [MPa] 1000 900 1480 1252
F2c [MPa] 200 200 200 193
F6 [MPa] 63 100 79 48
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Table 2: Laminates considered in this study.

Laminate Stacking Sequence Material

1 [0/902]s IM6/Avimid K [5]
2 [0/903]s
3 [02/902]s
4 [02/904]s
5 [0/902]s T300/Fiberite 934 [5]
6 [0/904]s
7 [02/90]s
8 [02/902]s
9 [02/904]s
10 [0/902]s AS4/Hercules 3501-6 [5]
11 [02/902]s
12 [0/904]s IM7/MTM45-1 [8]
13 [±25/905]s
14 [0/± 554/01/2]s
15 [0/± 704/01/2]s

Table 3: Critical energy release rates for Discrete Damage Mechanics (DDM ) model [19].

DDM Properties IM6/Avimid K T300/Fiberite 934 AS4/Hercules 3501-6 IM7/MTM45-1

GIc [J/m2] 258.0 208.0 60.0 255.1
GIIc [J/m2] - - - 598.1

Table 4: In-situ strengths and PDA fracture energy Gcmt.
Property Units IM6/Avimid K T300/Fiberite 934 AS4/Hercules 3501 IM7/MTM45

Carbon/Epoxy S8R S4R S8R S4R S8R S4R S8R S4R

F is2t [MPa] 64.5926 64.5896 41.2506 41.3186 35.4957 35.4320 50.9081 50.9103
F is6 [MPa] - - - - - - 128.4921 128.8867
Gcmt [KJ/m2] 5.1528 10.3045 3.9838 8.1693 4.8687 9.7574 12.2171 21.1091

Table 5: Comparison of adjusted and calculated in-situ strength values.

Material
F is2t [MPa] F is6 [MPa]

Adjusted Calculated Adjusted Calculated

IM6/Avimid R©K Polymer 64.5 58.6 - 89.1
T300/Fiberite 934 41.3 42.8 - 141.4
AS4/Hercules 3501-6 37.2 89.6 - 131.7
IM7/MTM45-1 50.9 82.4 128.7 67.9
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Supplemental materials

Script 1

### Script1 ###

from abaqus import *

from abaqusConstants import *

from section import *

from part import *

from material import *

from assembly import *

from step import *

from interaction import *

from load import *

from mesh import *

from job import *

from sketch import *

from visualization import *

# IT IS DEFINED A NEW CLASS MODEL: SET UP, RUN JOB AND GET THE RESULTS

class Model:

def GetResult(self):

## NOW, IT RUNS THE .ODB TO GET THE RESULTS

viewport = session.Viewport(name=’Viewport: 1’)

odb = session.openOdb(name=’Job-1.odb’)

viewport.setValues(displayedObject=odb)

for key in session.xyDataObjects.keys():

del session.xyDataObjects[key]

## GET THE DATA FROM NODES

session.xyDataListFromField(odb=odb, outputPosition=NODAL, variable=((’RF’,

NODAL, ((COMPONENT, ’RF1’), )), ), nodePick=((’PLATE-1’, 3, (’[#85 ]’, )),

), )

session.xyDataListFromField(odb=odb, outputPosition=NODAL, variable=((’U’,

NODAL, ((COMPONENT, ’U1’), )), ), nodePick=((’PLATE-1’, 1, (’[#8 ]’, )), ),

)

xy1 = session.xyDataObjects[’U:U1 PI: PLATE-1 N: 4’]

xy2 = session.xyDataObjects[’RF:RF1 PI: PLATE-1 N: 1’]

xy3 = session.xyDataObjects[’RF:RF1 PI: PLATE-1 N: 3’]

xy4 = session.xyDataObjects[’RF:RF1 PI: PLATE-1 N: 8’]

xy5 = combine(xy1, -1*(xy2+xy3+xy4))

return xy5

# THE TOTAL FORCE IS RETURNED
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def RunJob(self):

self.job.submit(consistencyChecking=OFF)

self.job.waitForCompletion()

def Setup(self, Gmenergy, F2strenght):

print "Gmenergy %f F2strenght %f" % (Gmenergy, F2strenght)

#Creating new databases. Erases all other data.

# CREATING NEW DATABASES. ERASES ALL OTHER DATA

mdb = Mdb()

mdb.models[’Model-1’].ConstrainedSketch(name=’__profile__’, sheetSize=200.0)

mdb.models[’Model-1’].sketches[’__profile__’].rectangle(point1=(0.0, 0.0),

point2=(55.0, 10.0))

mdb.models[’Model-1’].Part(dimensionality=THREE_D, name=’Plate’, type=

DEFORMABLE_BODY)

mdb.models[’Model-1’].parts[’Plate’].BaseShell(sketch=

mdb.models[’Model-1’].sketches[’__profile__’])

del mdb.models[’Model-1’].sketches[’__profile__’]

## MATERIAL PROPERTIES

self.glassEpoxyFiberite = mdb.models[’Model-1’].Material(

name=’glass/epoxy Fiberite HyE9082Af’)

self.glassEpoxyFiberite.Elastic(

table=((

44700.0, 12700.0, 12700.0, 0.297, 0.297, 0.41, 5800.0, 5800.0, 4500.0

), ),

type=ENGINEERING_CONSTANTS)

mdb.models[’Model-1’].materials[’glass/epoxy Fiberite HyE9082Af’].HashinDamageInitiation(

table=((1020.0, 620.0, F2strenght, 140.0, 48.5725, 70.0), ))

mdb.models[’Model-1’].materials[’glass/epoxy Fiberite HyE9082Af’

].hashinDamageInitiation.DamageEvolution(table=((1e+30, 1e+30, Gmenergy, 1e+30), ),

type=ENERGY)

## SECTION

mdb.models[’Model-1’].CompositeShellSection(idealization=NO_IDEALIZATION,

integrationRule=SIMPSON, layup=(SectionLayer(thickness=0.288,

material=’glass/epoxy Fiberite HyE9082Af’, plyName=’K1’), SectionLayer(

thickness=0.576, orientAngle=90.0,

material=’glass/epoxy Fiberite HyE9082Af’, plyName=’K2’)), layupName=

’0_2/90_4’, name=’Composite layup’, poissonDefinition=DEFAULT,

preIntegrate=OFF, symmetric=True, temperature=GRADIENT, thicknessModulus=

None, thicknessType=UNIFORM, useDensity=OFF)

## ASSIGN

mdb.models[’Model-1’].parts[’Plate’].Set(faces=

mdb.models[’Model-1’].parts[’Plate’].faces.getSequenceFromMask((’[#1 ]’, ),

), name=’Set-1’)

mdb.models[’Model-1’].parts[’Plate’].SectionAssignment(offset=0.0, offsetField=

’’, offsetType=MIDDLE_SURFACE, region=
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mdb.models[’Model-1’].parts[’Plate’].sets[’Set-1’], sectionName=

’Composite layup’, thicknessAssignment=FROM_SECTION)

## ASSEMBLY

mdb.models[’Model-1’].rootAssembly.DatumCsysByDefault(CARTESIAN)

mdb.models[’Model-1’].rootAssembly.Instance(dependent=OFF, name=’Plate-1’,

part=mdb.models[’Model-1’].parts[’Plate’])

## STEP

mdb.models[’Model-1’].StaticStep(initialInc=0.002, maxNumInc=1500, name=’Step-1’,

noStop=OFF, previous=’Initial’, timeIncrementationMethod=FIXED)

## FIELD OUTPUT

mdb.models[’Model-1’].fieldOutputRequests[’F-Output-1’].setValues(

sectionPoints=(1, 2, 3, 4, 5, 6), variables=(’S’, ’U’, ’RF’, ’DAMAGET’,

’DAMAGEMT’, ’HSNMTCRT’))

## B.C AND DISPLACEMENTS. ALSO, IT TAKES THE SET FOR EACH EDGE

mdb.models[’Model-1’].rootAssembly.Set(edges=

mdb.models[’Model-1’].rootAssembly.instances[’Plate-1’].edges.getSequenceFromMask(

(’[#8 ]’, ), ), name=’Set-1’)

mdb.models[’Model-1’].XsymmBC(createStepName=’Initial’, localCsys=None, name=

’BC-1’, region=mdb.models[’Model-1’].rootAssembly.sets[’Set-1’])

mdb.models[’Model-1’].rootAssembly.Set(edges=

mdb.models[’Model-1’].rootAssembly.instances[’Plate-1’].edges.getSequenceFromMask(

(’[#1 ]’, ), ), name=’Set-2’)

mdb.models[’Model-1’].YsymmBC(createStepName=’Initial’, localCsys=None, name=

’BC-2’, region=mdb.models[’Model-1’].rootAssembly.sets[’Set-2’])

mdb.models[’Model-1’].rootAssembly.Set(edges=

mdb.models[’Model-1’].rootAssembly.instances[’Plate-1’].edges.getSequenceFromMask(

(’[#2 ]’, ), ), name=’Set-3’)

mdb.models[’Model-1’].DisplacementBC(amplitude=UNSET, createStepName=’Step-1’,

distributionType=UNIFORM, fieldName=’’, fixed=OFF, localCsys=None, name=

’BC-3’, region=mdb.models[’Model-1’].rootAssembly.sets[’Set-3’], u1=0.825,

u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET)

## MESH

# SEED

mdb.models[’Model-1’].rootAssembly.seedPartInstance(deviationFactor=0.1,

minSizeFactor=0.1, regions=(

mdb.models[’Model-1’].rootAssembly.instances[’Plate-1’], ), size=135.0)

# CONTROL MESH

mdb.models[’Model-1’].rootAssembly.setMeshControls(elemShape=QUAD, regions=

mdb.models[’Model-1’].rootAssembly.instances[’Plate-1’].faces.getSequenceFromMask(

(’[#1 ]’, ), ), technique=STRUCTURED)

# ELEMENT TYPE

mdb.models[’Model-1’].rootAssembly.setElementType(elemTypes=(ElemType(

elemCode=S8R, elemLibrary=STANDARD), ElemType(elemCode=STRI65,

elemLibrary=STANDARD)), regions=(

mdb.models[’Model-1’].rootAssembly.instances[’Plate-1’].faces.getSequenceFromMask(

(’[#1 ]’, ), ), ))

mdb.models[’Model-1’].rootAssembly.generateMesh(regions=(

mdb.models[’Model-1’].rootAssembly.instances[’Plate-1’], ))
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# CREATE A JOB

self.job = mdb.Job(atTime=None, contactPrint=OFF, description=’’, echoPrint=OFF,

explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,

memory=90, memoryUnits=PERCENTAGE, model=’Model-1’, modelPrint=OFF,

multiprocessingMode=DEFAULT, name=’Job-1’, nodalOutputPrecision=SINGLE,

numCpus=1, numGPUs=0, queue=None, resultsFormat=ODB, scratch=’’, type=

ANALYSIS, userSubroutine=’’, waitHours=0, waitMinutes=0)

Script 2

### Script2 ###

from Script1 import Model

import math

# [Gmc, F2t, E(MPa), Area(mm^2), l_o(mm), Tol(mm)] VARIABLES AND

# ARGUMENTS IN ORDER TO OPTIMIZE

def Iteration(x, *args):

Gmenergy = x[0]

F2strenght = x[1]

E = args[0]

Area = args[1]

l_o = args[2]

model = Model()

model.Setup(Gmenergy, F2strenght)

model.RunJob()

result = model.GetResult()

displacements = [element[0] for element in result[1:]]

forces = [element[1] for element in result[1:]]

strains = [d / l_o for d in displacements]

stresses = [f / Area for f in forces]

stiffness = [stress / strain / E for (stress, strain) in zip(stresses, strains)]

strains = [strain * 100.0 for strain in strains]

A = dict(zip(strains, stiffness))

B = {

0.35909 : 1,

0.364866 : 1,

0.399523 : 1,

0.509413 : 0.984729,

0.578784 : 0.978818,
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0.590251 : 0.987685,

0.711778 : 0.964039,

0.764191 : 0.919704,

0.769995 : 0.916749,

0.787295 : 0.919704,

0.967324 : 0.819212,

0.97882 : 0.825123,

0.996091 : 0.831034,

1.01353 : 0.819212,

1.18127 : 0.795567,

1.19288 : 0.789655,

1.21618 : 0.768966,

1.23343 : 0.777833,

1.378 : 0.760099,

1.40125 : 0.74532,

1.41277 : 0.748276,

1.47645 : 0.733498

}

# FUNCTION ERROR. INITIAL VALUE

error = 0

for (experimentalStrain, experimentalStiffness) in B.items():

(_, correspondingModelStiffness) = min(A.items(), key=lambda (v, _): abs(v -

experimentalStrain))

#print str(experimentalStiffness) + " " + str(correspondingModelStiffness)

error += pow(experimentalStiffness - correspondingModelStiffness, 2)

error = (1.0/len(B)) * math.sqrt(error);

return error

Script 3

### Script3 ###

# We must run this script to optimize the variables Gmenergy and F2strenght

import numpy as np

from numpy import array, asarray, float64, int32, zeros

from scipy.optimize import fmin

from Script2 import Iteration

#Gmenergy = 3 # Toughness fracture (initial value)

#F2strenght = 31 # Transverse strength in-situ (initial value)
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#lb = [1.5, 20] # Initial bound constraint for Gmc and F2t respectively

#ub = [30.5, 141] # Final bound constraint for Gmc and F2t respectively

x0 = array([3,31]) # Initial vector

#mybounds = [(1.5,20), (30.5,141)] # Initial bound constraint vector

E = 23540 # Initial longitudinal modulus of composite

Area = 17.28 # Total area of composite

l_o = 55 # Initial length of composite

xopt,fopt,iter,funcalls, warnflag,allvecs = fmin(Iteration, x0, args = (E, Area, l_o),

xtol=1e-4,ftol=1e-4, maxiter=None, maxfun=None, full_output=True, retall=True)

print(xopt)

print(fopt)

print(funcalls)

print(allvecs)
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