
Ever J. Barbero and Antoine Joseph Bedard Jr., Electrical percolation threshold of magnetostrictive inclusions in a 
piezoelectric matrix composite as a function of relative particle size, Computational Particle Mechanics, (2018)  
vol. 5(2), pp. 227-238. DOI: 10.1007/s40571-017-0165-4    

 

Page 1 of 19 

 

Electrical percolation threshold of magnetostrictive inclusions in a 

piezoelectric matrix composite as a function of relative particle size 
 

Ever J. Barbero, Antoine Joseph Bedard Jr. 
 

ABSTRACT 

Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric-

matrix derived from a piezoelectric powder precursor.  Ferrite magnetostrictive particles, if allowed to 

percolate, can short the potential difference generated in the piezoelectric phase.   Modeling a 

magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to 

explore relationships among relative particle size, particle affinity, and electrical percolation with the goal 

of maximizing the percolation threshold.  It is found that two factors raise the percolation threshold, namely 

the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive 

and piezoelectric particles. 
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1. Introduction and objectives 

Magnetostriction is a property of ferromagnetic materials that causes them to deform with strain when 

exposed to a magnetic field [1-8].  For example, Cobalt ferrite CoFe2O4 (CFO) is a ceramic ferrite with 

high magnetostrictive coupling [5].  The piezoelectric effect [4, 7] is the ability to generate electrical 

potential in response to an applied mechanical strain [9].  For example, perovskite Pb[Zr 0.52 Ti 0.48]O3 (PZT) 

is a chemically stable and hard material with high piezoelectric coupling [10].  Magnetoelectric (ME) 

composites combine magnetostrictive and piezoelectric materials into a composite material that can convert 

a magnetic field into an electrical potential [1-8].   

Since magnetostrictive (H) materials are electrically conductive [1-3], once the H particles percolate, 

the charge produced by the piezoelectric (E) materials is lost, so a high percolation threshold is needed to 

achieve high magnetoelectric performance [11-16].  Therefore, the objective of this study is to find the 

largest volume fraction for which electrical percolation of the H phase does not occur as a function of the 

relative particle size and affinity between the precursor powders. 

The ratio of the volume of H particles to the volume of the simulation box is denoted by ρ = VH/box 

volume.    A mixture of two powders, one conductive and the other insulating, represented by spheres of 

equal diameter has a percolation threshold of ρc =15.4 % regardless of the arrangement of the spheres into 

any type of lattice [11, 17].  The volume ratio ρ may be written as ρ = f×p where f is the packing fraction 

of both powders in the container, and p = VH/(VH+VE) is the volume fraction [17].  If the interstitial space 

between the H spheres is filled completely by the E phase, then f=1, and the volume ratio ρ and the volume 
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fraction p are numerically equal.  However, if the interstitial space between H particles is reduced by 

sintering, then the volume fraction increases because pc = ρc/f where f is measured before sintering.   

Others have studied the effects of particle size on rheology or flow patterns [18, 19] and granular 

segregation [20, 21], and numerous researchers have applied molecular or particle dynamics to the study of 

granular motion [18-21].   Kuzy [23] studied the effects of particle size on granular static spatial distribution 

patterns and, in particular, studied the percolation threshold when ρc = pc of a fine-grain conductive phase 

H with spherical particle radius RH dispersed and surrounding larger spherical particles of insulating phase 

E with radius RE.  He concluded (Fig. 1 lower right insert) that the larger the RE/RH ratio, the lower the 

percolation threshold of the H phase.  Our study is the diametric opposite of Kuzy’s; that is, to increase the 

percolation threshold of the larger H phase (Fig. 1 upper left insert) by reducing the size of particles in the 

E phase.   One goal of this study is to test via molecular dynamics simulation the proposition that the 

percolation threshold of the H phase will increase as the size of the particles in the E phase decreases [11-

12, 20, 23, 24]. 

 
Fig. 1. Percolation threshold prediction form [11] as a function of relative particle size RE/RH.  Insert lower 

right: smaller H dark particles; upper left: larger H dark particles. 

 

2. Methodology 

2.1 Molecular Dynamics 

In this study, molecular dynamics is preformed using Large Scale Atomic and Molecular Massively 

Parallel Simulation (LAMMPS)© software from Sandia National Laboratories [34] to simulate the mixing 

of two powders that represent the magnetostrictive H and piezoelectric E phases.  Particles are modeled as 

perfect spheres of uniform density for each phase, but each phase has a different diameter with a ratio 

between the two diameters given by RH/RE.  The Leonard-Jones (L-J) “12-6” potential is used in this study 

to model particles interactions where distance is expressed in units of sigma (σ) and energy in units of 

epsilon (ε) which are features of the pair-wise L-J potential function between particles centers (Fig. 2).   The 

diameter D the H particles were chosen to be 100 nm (D=1.12246σ) as a compromise between the effects 

of quantum tunneling [25-31] and mechanical coupling [1-2, 13-16].  If the particles are too large, 
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mechanical coupling between the E and H phase will be poor.  If the particles are too small, quantum 

tunneling will short any voltage produced in the E phase.  The L-J potential can be used to model hard shell 

spheres with the particle diameter modeled as the cutoff corresponding to the deepest point in the well 

which is located at 1.12246σ (Fig. 2).  The potential after the cutoff value Rc is set to zero. 

 
Fig. 2 Leonard-Jones pair-wise potential energy. 

To approximate the hard-shell behavior, the well depth (Fig. 2) was set to 10ε during the mixing stage 

and 20ε during the equilibration and gelation stages.  Per preliminary studies using Hertzian analysis [32, 

33] to compare Leonard-Jones well depth to particle elasticity, a well depth of 10ε to 20ε produces a stress 

which is at least three orders of magnitude larger than any stress which would be produced by gravity on 

either the H or E particles.  Therefore, the effects of gravity may be ignored.   To simulate particle friction 

and affinity, an attractive force is added between the H and E particles while no other forces are present.  

This was accomplished by extending the L-J cutoff between the H and E particles from rco =1.12246σ to 

rco = 1.25σ.  The value 1.25σ was chosen because too large a cutoff violates the rigid spheres assumption 

that particles do not attract each other.  If particles attract each other over long distances, then the distance 

between the particles decreases, thus enhancing the likelihood of H particle percolation, contrary to our 

goals. 

2.2 Simulation Process 

We require H and E particles to be well mixed with each other to maintain high electromechanical 

energy transfer between them.   All simulations are time integrated with the Verlet velocity algorithm [34] 

using the Nose-Hoover NVT thermostat where the number and volume are fixed and temperature is either 

fixed or slowly decreased.  To prevent segregation, a common problem when mixing powders [23, 35-40], 

the simulations are performed in three separate stages of mixing, equilibration, and gelation.   

In the first stage (mixing) all particles are initially mixed at an L-J temperature of T=0.2 ε/kB (kB is the 

Boltzman constant) for 10 million time steps for RH/RE=1, 2, and 5 million time steps for RH/RE=3.  In all 

cases, periodic boundary conditions are applied.   For equally sized spheres, the maximum packing fraction 

below which the particles are free to move is f=0.64 [39].  For any packing fraction above this value, the 

particles will experience a glass transition [36, 39] and thus are not be able to move or mix.  Therefore, for 

the mixing stage, the packing fraction used was f=0.5236 corresponding to the simple cubic (sc) lattice.  

This is sufficiently less than f =0.64 to allow mixing to occur.   
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The second stage (equilibration) is where local particle movement on the order of particles size is 

allowed, but motion on the order of the size of the simulation box is restricted.    The equilibration stage is 

run for 100,000 time steps with the L-J parameters σ and the cutoff rco adjusted to increase the particle size, 

so that the particles occupy more space for a fixed simulation box volume, effectively increasing the 

packing fraction from f=0.5236 to f=0.553.  During the second stage (equilibration) the simulation is run at 

a cold temperature ramped from T=0.02ε/kB to 0.01ε/kB allowing sufficient energy for the particles to move 

locally to find their equilibrium positions but restrict particle movement sufficiently to avoid particle 

segregation [23, 35-40].  Finally, the third stage (gelation) is run for 10,000 additional time steps where the 

temperature is also ramped from T= 0.02ε/KB to 0.01 ε/kB, to allow sufficient energy for motion while the 

L-J interaction between the particles and the box walls is adjusted to effectively decrease the box size to 

achieve the target packing fraction of f=0.64, 0.675, 0.73 for RH/RE = 1, 2, 3 respectively [39]. 

2.2.1 Packing Fraction 

To achieve a packing fraction of f=0.64, 0.675, or 0.73, for RH/RE=1, 2, 3, without segregation, particles 

of diameter 1.12246σ are mixed in a simulation box of side length equal to 20×1.12246σ at a packing 

fraction of 0.5236 with periodic boundary conditions applied.  In the equilibration stage, isotropic 

compression [20] is applied to scale up the particle radii by a factor of (0.64/0.5236)1/3 for RH/RE=1, 

(0.675/0.5235)1/3 for RH/RE=2, and (0.73/0.5235)1/3 for RH/RE=3.  For RH/RE=1 this scale factor would 

increase the packing fraction to 0.5236 × (0.64/0.5235) = 0.64. However, with periodic boundary conditions 

the particle centers can reach the walls of the box, effectively decreasing the packing fraction to 0.64 

×(20/21) 3 = 0.552856.  This packing fraction is still sufficiently below f=0.64, to allow local particle 

movement, but is sufficiently high to prevent phase segregation, as evidenced by the measurements for the 

center of  mass (CoM), average local volume fraction (pa), probability density profile (PDP), and radial 

distribution function (RDF) (see section 2.3).  To restore the packing fraction back to 0.64 the simulation 

box is shrunk by a factor of (20/21) in the gelation stage, thus removing the reduction in packing fraction f 

that resulted from using periodic boundary conditions.   

2.2.2 Particle Size 

Simulations were conducted for three relative particle sizes of RH/RE =1, 2, 3 where RH and RE are the 

radius of the conductive H and insulating E phase particles, respectively.  RH is fixed at 100 nm, and the 

density of the particles is scaled to correspond to CFO and PZT molecular weights.   When the H and E 

particles are of equal size, the simulation box side length is 1.12246σ times the cube root of the number of 

particles being simulated.   Specifically, for 203 total spheres the length of the simulation box is 

1.12246σ×20 = 22.4492σ.   Since the size of the box and the number of H particles remains unchanged 

throughout this study, to maintain the volume fraction (p) and the packing fraction (f) unchanged, the 

number of E particles is varied with (RH/RE)3.  In the gelation stage, the simulation uses rigid walls which 

are constructed with Leonard-Jones particle-wall interactions equal to the particle-particle interactions. 

2.3 Characterization 

Measurements for this study include the radial distribution function (RDF), probability density profiles 

(PDP), center of mass (CoM), and average local volume fraction (pa), which were used to characterize the 

degree of mixing. 
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2.3.1 Radial Distribution Function 

The radial distribution function (RDF) maps the distances among pairs of particles H-H, E-E, and H-

E  to the likelihood of finding pairs of particles at those distances from each other.  These functions 

characterize the structure between phases as well as mean separation distances which are a key parameter 

for understanding percolation [12, 25, 41, 42, 55].   

2.3.2 Probability Density Profiles 

Probability density profiles (PDP) are histograms of the number of particles (both H and E) which in 

this study are computed between y and y+Δy along the y axis of the simulation box, where Δy represents 

the histogram bin size which is taken as one eight the length of the simulation box.  The PDP gives a 

measure of the degree of mixing between H and E particles.  The percent difference is defined as the 

difference between the maximum and minimum values of density divided by the average density.  Percent 

differences less than 10 % typically indicate good mixing.  On the other hand if the particles segregate, a 

sharp inflection or abrupt value change in the PDP is observed. 

2.3.3 Center of Mass 

The center of mass (CoM) is computed as a function of time in L-J time steps along a single direction 

of the simulation box for the H particles only.   A well-mixed distribution of H particles will have a CoM 

within plus or minus 5 % of the center of the box after the simulation is completed.  A CoM outside this 5 

% range provides an indication that segregation has occurred.  

2.3.4 Average Local Volume Fraction 

The average local volume fraction (pa) is an intrinsic scale invariant quantity proportionate to the 

volume fraction measured repeatedly within small spheres of radius twice the radius of an H particle for all 

particles both H and E for any given simulation.   For example, for a simulation with volume fraction 

p=0.18, if 12 H particles of diameter D were found in a sphere of diameter 2D centered around any given 

particle, and 64 E particles were found in that same sphere, then pa for that point would be 12/64 × 100 = 

0.1875 .  This calculation is repeated for all particle centers and averaged.  In order to compare pa values 

for simulations of unequal number of E particles, the number of E particles is normalized by dividing the 

number of E particles found in any 2D sphere by (RH/RE)3.   

2.4 Percolation Distance 

The percolation distance Rc or critical range between particle centers where percolation first occurs is 

the smallest distance between adjacent particle centers for which pairs of connected particles are chained 

together to produce a percolation path from one side of the simulation box to the other.  Any distance larger 

than Rc will also produce a percolation path, but the critical percolation distance is always the smallest 

distance among coordinate centers which produces a percolation.  The percolation distance Rc includes the 

effective particle diameter after growth (section 2.4.1) and the effect from quantum tunneling (section 

2.4.2).  Because the growth or scaling factor is different for different packing fractions at which glass 

transition is expected, Rc is calculated as follows:  
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Rc = particle diameter × scale factor × quantum tunneling       (1)  

RH/RE=1  Rc = 1.12246σ × (0.64/0.5236) 1/3 × 1.05 = 1.26σ     (1a) 

 RH/RE=2  Rc = 1.12246σ × (0.675/0.5236) 1/3 × 1.05 = 1.28σ   (1b) 

RH/RE=3  Rc = 1.12246σ × (0.73/0.5236) 1/3 × 1.05 = 1.32σ     (1c) 

 

2.4.1 Particle Growth Factor 

The maximum packing fraction of equally sized random close packed spheres that can be achieved 

without particle deformation is f = 0.64 for RH/RE = 1, f = 0.675 for RH/RE = 2, and f = 0.73 for RH/R E= 3 

[38, 39].  When powders or hard shell spheres are mixed, segregation between non-identical particles can 

occur when the particles are under stress or pressure [23, 35-40].  In order to achieve a packing fraction of 

f = 0.64 while avoiding phase segregation, in the case of RH/RE=1, the particle diameters are increased in 

the equilibration stage by a scaling factor of (0.64/0.5235)1/3 =1.069203.  This increases the diameter of the 

particles from 1.12246σ to 1.200137σ.   In the case of RH/RE=2, and 3, the particle diameters are increased 

by a factor of (0.675/0.5235)1/3, and (0.73/0.5235)1/3 respectively (section 2.2.1).  

2.4.2 Quantum Tunneling 

 Quantum tunneling [43] is an effect whereby electric charge can jump a space between conductive but 

electrically isolated particles that is forbidden by classical mechanics.    Quantum tunneling is reported to 

range from 3 nm [25] to 10 nm [31] between conducting particles in a non-conducting matrix.  Others [28, 

29] describe plasmonic (charge density) energy transfer partially attributed to tunneling between conducting 

particles separated by distances up to 7 nm.   Hill et al. [27] reports plasmonic conduction between particles 

exceeding a separation distances of 20 nm.  As a compromise among the values reported in the literature, a 

quantum tunneling distance of 5 nm is added to the distance Rc between particles centers which is used to 

evaluate percolation. For H particles with diameter D=100 nm, this is represented by the factor 1.05 shown 

in eqns. (1).   

2.5 Percolation 

A novel algorithm was developed to detect percolation. The algorithm consists of two subroutines.  The 

first subroutine builds a pair-bonding list of all pairs of H particles that are less than Rc from each other.  

The second subroutine attempts to find a path from the particles located near one side of the box to those 

located near the other side by chaining together successive pairs of particles via recursion [44]. Particles 

are considered to be near a wall of the simulation box if their centers are located within 10 % of the length 

of the simulation box.  

After Rc is determined for a given volume fraction p, the average random close packed coordination 

number c.n. is computed and later used to show that the average number of connections of each particle to 

nearby particles within a distance of Rc is approximately independent of the volume fraction p.  An end 

zone distance of 10 % was chosen because the particles centers cannot get closer than 0.627σ from either 

simulation wall adjusting for particle growth in the equilibration stage.  This causes a dearth of particle 



Ever J. Barbero and Antoine Joseph Bedard Jr., Electrical percolation threshold of magnetostrictive inclusions in a 
piezoelectric matrix composite as a function of relative particle size, Computational Particle Mechanics, (2018)  
vol. 5(2), pp. 227-238. DOI: 10.1007/s40571-017-0165-4    

 

Page 7 of 19 

 

centers in the first and last slice closest to the walls as shown in Fig. 5 (section 3.2).  Since the box length 

is 22.4492σ, 10 % of this is rounded to 2.25σ.  The second to last slice where a full population of particles 

is expected to occur is between 0.63σ and 1.9σ.  Adding a small safety factor of 0.35σ to account for steric 

effects, if any percolation path gets within 2.25σ or 10 % of the box length to a wall, a conductive path is 

presumed. 

2.6 Affinity 

As all the particles are compressed, for the cases when RH/RE is not equal to one, the smaller E particles 

are likely to move to the interstitial space between the large H particles rather than maintain positions that 

separate H particles from each other.  Friction between the H and E particles would reduce this tendency, 

but the Leonard-Jones potential used in this study produces a purely radial force between particles without 

a shear or frictional component. The effect of friction may be partially simulated, however, by a radial 

attractive force between the H and E particles.   A radial force between the H and E particles is implemented 

by extending the L-J cutoff parameter rco between the H and E particles.   In our study, we extended the L-

J from rco = 1.12246σ to rco = 1.25σ.  The value 1.25σ was chosen to allow the H particles to attract the E 

particles close to the surface of the H particles, but to be short range enough so as not to allow long range 

forces to do work on the system.  

In addition, even in the absence of friction, a slight attractive force between H and E particles allows 

the smaller E particles to act like a coat of paint surrounding and insulating the conductive H particles 

which would increase the percolation threshold.  Functionalization of CFO particles into polymers has been 

considered by [45] whereby similar techniques might be used to produce affinity between H and E particles.  

3. Results  

The critical percolation threshold ρc of phase H is expressed as ρc = VH/Vbox = f×pc where f is the 

packing fraction, VH is the volume of the H particles, Vbox is the volume of the simulation box, and pc is 

the critical volume fraction, where volume fraction is defined as p = VH/(VH+VE).  The critical percolation 

threshold ρc for equally sized hard-shell spheres without affinity is 0.1557 [11, 17].  To verify our model, 

three different lattices, simple cubic (sc) (f=0.5236), body centered cubic (bcc) (f=0.6802), and hexagonal 

close packed (hcp) (f=0.7405) were evaluated for percolation.   For all crystal lattices, RH/RE=1, and 

different volume fractions were achieved by randomly removing a precise number of phase H spheres at 

lattice points while leaving the remaining H spheres in place.  The results are shown in Table 1 and are 

comparable to Table I of [17].   

For RH/RE=1, volume fraction is   

p = NH / (NH+NE) = VH/(VH+VE) (2) 

where N is the number of particles and V is the volume of phases E and H.  

In general, the volume ratio is 

ρ = f × p    (3) 
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The percolation thresholds pc and ρc shown in Tables 1-2 are the lowest values of p and ρ for which 

percolation occurs. 

Table 1. Percolation Thresholds for hcp, bcc, and sc lattices with RH/RE=1. 

Crystal 3D c.n. f pc ρc ρc Scher-Zallen [23] 

hcp 12 0.7405 0.175 0.130 0.144 

bcc 8 0.6802 0.24 0.163 0.163 

sc 6 0.5326 0.32 0.168 0.162 

 

                    

Fig. 3 Three different cases of segregation between red H and blue E particles 

 

3.1 Segregation 

When granular mixtures with different properties are subjected to stress or pressure, segregation as 

shown in Fig. 3 can occur [36, 46].   Segregation occurs between the different constituents [13-16, 23] [36, 

47-50] due to difference in velocity, size, and density of the different particles groups.  Segregation is 

detrimental to electromechanical coupling which requires the H and E particles to be thoroughly mixed.   

Percolation among one phase will either be undesirably enhanced within an aggregation of H particles 

which excludes E particles, or percolation will be inhibited if an agglomeration of H particles does not 

reach from one side to the other, but occupies just a central region.  In this study, glass transition [35, 36, 

41, 48, 51, 52] is used to restrict particle motion preventing segregation while the particles undergo 

equilibration and gelation.   Glass transition is described as a sharp change from a viscous, rubbery, or fluid 

state to solid or gel state [35, 37, 52].   In this study we adopt the approach per [52] that at high packing 

fractions “arrest takes place via a glass transition process which can be driven by jamming as in hard sphere 

systems.”   

3.2 Random Close Packed Powders 

The closest that hard spheres can be packed into any lattice are with a coordination number of 12 and 

packing fraction of 0.7405 [53] which occurs for hcp and fcc lattices.  If a lattice is relaxed and the spheres 

are allowed to move randomly, the arrangement with the highest packing is called random close packing 

(rcp) with a packing fraction of 0.64 [17, 22, 37, 38, 40].   
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 The results for simulations of random close packed powders using our methodology are shown in Table 

2 and Fig. 4 with affinity (A) or no affinity (N) applied between H and E particles.   The average local 

volume fraction pa described in section 2.14 is a measure of mixing.  When mixing between the H and E 

phases is well maintained the average local volume fraction pa approaches p (or pc at percolation).  c.n. is 

the average coordination number of the H particles computed at the smallest inter-particle distance between 

H particle-centers that produces a percolation.  pc = VH/(VH+VE) is the percolation threshold measured as 

the volume fraction of H with respect to the total volume of particles.  ρc = VH/box is the percolation 

threshold measured as the volume ratio of H to the simulation box. The latter is the value most commonly 

reported in the literature.  

 

Table 2. Mean value and (COV [%]), pa: average local volume fraction, pc: percolation volume fraction, c.n.: 

coordination number, ρc: percolation threshold, all results from n=3 simulations for each case.  

Affinity RH/RE pa c.n. pc ρc 

N 1 0.2429 (10.19) 1.69 (16.22) 0.2433 (8.555) 0.1557 (8.384) 

N 2 0.2780 (4.893) 2.02 (7.967) 0.2833 (5.391) 0.1913 (5.589) 

N 3 0.3213 (3.962) 1.897 (3.390) 0.320 (5.413) 0.2337 (5.436) 

N 4 0.3296 (0.4076) 1.953 (3.331) 0.3267 (1.767) 0.2467 (1.638) 

A 1 0.2996 (2.165) 1.563 (9.320) 0.2967 (1.946) 0.190 (1.823) 

A 2 0.3375 (2.923) 1.7467 (4.936) 0.350 (2.857) 0.2363 (2.753) 

A 3 0.3984 (6.305) 1.55 (0.0) 0.3933 (5.292) 0.287 (5.273) 

A 4 0.3639 (2.124) 1.757 (1.999) 0.3567 (3.219) 0.269 (3.219) 

       

 
Fig. 4. Percolation threshold as a function of relative particle size with and without affinity. 
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It can be seen in Table 2 that for RH/RE=1, ρc reproduces the value of 0.1557 (~0.16) from the literature 

[11, 17].  For RH/RE  > 1, ρc grows with RH/RE (0.1913, 0.2337), and more so with affinity (0.2368, 0.2870).  

With only three simulations per case, the coefficient of variance is reasonably small.  The average 

coordination numbers (c.n.) are approximately invariant of the affinity and RH/RE particle diameter ratio, 

and are less than an integer away from the number two, since every particle in the conduction path needs a 

minimum of two contact points to be part of a conductive chain.  The average local volume fraction (pa) 

correlates well with the critical volume fraction pc indicating the H and E particles are well mixed.  

The improvement of percolation threshold is remarkable. By increasing the percolation threshold one 

could increase the volume fraction of magnetostrictive phase H up to nearly pc, which would result in better 

performance of the device as measured by the magnetoelectric coupling k [13-16]. Without H-E particle 

affinity, ρc grows by 22.8 % and 50.0 % for RH/RE=2, 3, respectively.  When H-E particle affinity is 

introduced, the percolation threshold increases by 52.0 % and 84.3 % for RH/RE=2, 3, respectively. In all 

cases the percentage change is calculated with respect to the case RH/RE=1 without affinity, which yields 

the well-known value ρc=0.1557 [11, 17]. 

A typical probability density profile (section 2.3.2) during the gelation stage is shown in Fig. 5.   All 

density profiles show a percent difference less than 8 % (excluding the first and last slice due to edge 

effects) indicating that the phases remains mixed through all three stages without segregation.    

A typical plot of the center of mass (CoM) (described in section 2.3.3) for the H particles is shown in 

Fig. 6.  The CoM remains close to the center of the simulation box within 5 % for all simulations in all 

stages again indicating good mixing without segregation. 
        

 
Fig. 5 Probability profile, gelation stage,  RH/RE=2, Type:N,  p=0.3 
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Fig. 6 Center of Mass, gelation stage, RH/RE=2, Type:N, p=0.3 

 

Renderings of particle positions after each stage of the simulation are shown in Figs. 7-14 with H 

particles in red and E particles in blue color.  The radial distribution function RDF depicts morphological 

features and energy plots which attest to the equilibrium reached in each case.  
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(a)  PM:red  PE:blue          (b) PM only      (c)  RDF                (d) Kinetic and  Potential. Energy vs. time  

Fig. 7 Mixing stage,  RH/RE=2  p=0.3 

   
 (a)  PM:red  PE:blue         (b) PM only     (c)  RDF            (d) Kinetic and Potential  Energy vs. time 

Fig. 8 Equilibration stage,  RH/RE=1, Type:N,  p=0.3 

 

        
 (a)  PM:red  PE:blue          (b) PM only     (c)  RDF               (d) Kinetic and Potential  Energy vs. time 

Fig. 9 Equilibration stage,  RH/RE=2, Type:N,  p=0.3 

     
 (a)  PM:red  PE:blue          (b) PM only     (c)  RDF              (d) Kinetic and Potential  Energy vs. time 

Fig. 10 Equilibration stage,  RH/RE=2, Type:A,  p=0.3 
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a)  PM:red  PE:blue          (b) PM only          (c)  RDF      (d) Kinetic and Potential Energy vs. time 

Fig. 11 Equilibration stage,  RH/RE=3, Type:N,  p=0.3 

 

     
a)  PM:red  PE:blue          (b) PM only         (c)  RDF                 (d) Kinetic and Potential Energy vs. time 

Fig. 12 Equilibration stage,  RH/RE=3, Type:A,  p=0.3 

 

 
 (a)  PM:red  PE:blue               (b) PM only            (c)  RDF                                 (d) Kinetic and  Potential Energy vs. time 

Fig. 13 Gelation stage,  RH/RE=2, Type:N,  p=0.3 

  
     (a)  PM:red  PE:blue         (b) PM only             (c)  RDF          (d) Kinetic and  Potential Energy vs. time 

Fig. 14 Gelation stage,  RH/RE=2, Type:A,  p=0.3 
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4. Analysis 

For the mixing stage when RH/RE=2 the RDF for the particle pairs H-H, E-E, and H-E are all as shown 

in Fig. 7 where the primary peak of H-H interaction occurs at value 1.14σ because there is no segregation 

and all particles are the same size.  In the mixing stage, the packing fraction f= 0.5236 is well below the 

glass transition value f = 0.64, 0.675, 0.73 for RH/RE = 1, 2, 3 respectively [35, 37].  Further, the potential 

energy in Fig. 9(d) becomes more negative to reflect the compaction of the powder [22] when the packing 

fraction f is increased.   

In Fig. 7, for mixing with RH/RE= 2, the RDF abscissa of the primary peaks are separated into three 

peaks relative to the single peak in Fig. 8.   In Fig. 7 the H-H peak is at 1.14σ and the E-E peak is at 0.58σ, 

which is roughly half the H-H abscissa value.  The H-E peak is at 0.86σ which is roughly 75 % of the H-

H peak location.  This is due to the diameters of the E particles being one-half of the H particles. 

In Fig. 8 for the equilibration stage for RH/RE=1, the particles are grown by instantaneously increasing 

the diameter by factor of (0.64/0.5236) 1/3, but due to the removal of the periodic boundary conditions (PBC) 

the effective packing fraction only changes from 0.5236 to 0.5529.   In Fig. 9 for the equilibration stage 

without H-E particle affinity and RH/RE=2, the potential energy becomes less negative indicating less 

compression among the spheres as a function of time.  That is, the particles find their equilibrium positions 

because the system has not yet gelled, and this is accompanied by the kinetic energy decreasing to near zero 

while the temperature is lowered from 0.02ε/kB to 0.01ε/kB. 

To enhance H-H particle separation in Figs.10, 12 for the equilibration stage and in Fig. 14 for the 

gelation stage, particle affinity is introduced between H and E with no affinity between like particles (H-H 

or E-E particles).  This changes the radial distribution functions magnifying the vertical height of the H-E 

peaks for all figures, although the location along the abscissa remains the same.  In Figs.10, 12, and 14 the 

H-E primary peak is larger than the E-E peaks in the same figures because H-E affinity introduces some 

attraction between H and E phases, as expected.   Fig. 9 (no affinity) during equilibration with RH/RE = 2 

is similar to Fig. 7 (mixing) but the potential energy in Fig. 9(d) becomes less negative indicating that the 

particles are relaxing to equilibrium.   

In the equilibration stage, comparing Figs. 10 and 12 (affinity) to Figs. 9 and 11 (no affinity), there is 

a sharp increase in the vertical height of the H-E peak, and a relative decrease in the H-H peak with little 

change in the E-E primary peak.   Comparing Fig. 10 (affinity) to Fig. 9 (no affinity) with RM/RE = 2, there 

are three distinct primary peaks in Fig. 9, one for each inter-particle distance H-H, H-E, and E-E, but in 

Fig. 10 the H-E peak only is magnified due to affinity.  Comparing Fig. 14 (affinity) to Fig. 13 (no affinity) 

for RH/RE = 3, the H-E peak shrinks by about 30 % while the H-H peak almost disappears and is distributed 

among numerous smaller peaks between 1 and 2 on the abscissa shifted to the right.   This indicates that 

the H particles have moved away from each other, and this pattern repeats for RH/RE = 3. Therefore, with 

affinity between the H and E particles, the H particles are on average farther apart from each other than 

they are without affinity, further supporting the results presented in Table 2.  In addition, in Figs. 10 and 12 

(affinity) the potential energy becomes more negative relative to Figs. 9 and 11 (no affinity).   This is 

because the extended tail of the L-J potential used to model the H-E attraction is adding more negative 

potential energy to the system confirming the H-E affinity.   These observed relationships between figures 

9 through 14 suggest that E particles are surrounding the H particles, thus isolating the H particles from 

each other, which in turn support the results presented in Table 2 and Fig. 4.  
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5.0 Summary 

Percolation may be interpreted as a combination of two things (a) the number of paths available at each 

particle node and (b) the probability of success of finding a conductive particle at each node.  As the number 

of paths between nodes increases, the likelihood of success of a percolation from one side of the sample to 

the other also increases.  Likewise, the probability of finding a conductive particle at any given node also 

increases the likelihood of a successful percolation.  These two factors (success per node and paths per 

node) help us understand how different percolation thresholds occur. 

Regarding phase and segregation, when hard shells are under pressure, segregation occurs because of 

the size, density, or kinetic differences among groups of particles.  Liquids do not show this segregation 

behavior which is only seen with mixing powders [36].  Because particles will not mix as the glass transition 

is approached [36, 46] , and because particles tend to agglomerate or segregate in response to pressure [36, 

46],  growing spheres and varying the simulation box size is adopted as a way to control the undesired 

segregation. 

When there is an attractive force between the H and E particles, the H particles become increasingly 

separated from each other, and this effect becomes more pronounced the greater the size difference between 

the particles.  But, even without H-E affinity when the E particles are smaller than the H particles, 

percolation is inhibited.  Short range affinity can simulate friction to the extent that it prevents small E 

particles from segregating to interstitial locations while long range affinity promotes segregation lowering 

the percolation threshold.    

The radial distribution functions describe inter-particle distances between particles, so when the RDF 

primary H-E peaks are smaller and shifted to the right, the percolation threshold is likely to increase as 

confirmed by the results.  Our research shows two factors that can move the H-E peak to the right.  The 

first factor is reducing the size of E particles relative to H particles to allow E particles to move in between 

and separate the H particles thus raising the percolation threshold.   The second factor is providing short 

range affinity between the H and E particles which inhibits E particles from being expelled away from 

between H particles when the composite is compacted.  These factors together raise the percolation 

threshold per Table 2 from f = 0.1557 to f = 0.2870 showing a relative percent increase of 84.3 %. 

 

6. Conclusions 

In conclusion, we determined that the percolation threshold increases as the ratio of particles sizes 

RH/RE increases.  In addition, we found that the percolation threshold can be increased by inter-phase 

particle affinity and in fact increases more than in the cases of solely varying particle size.  Without H-E 

particle affinity, ρc grows by 22.8 % and 50.1 % for RH/RE=2, 3, respectively.  When H-E particle affinity 

is introduced, the percolation threshold increases by 51.8 % and 84.3 % for RH/RE=2, 3, respectively. In all 

cases the percentage change is calculated with respect to the case RH/RE=1 without affinity, which yields 

the well-known Scher-Zallen value ρc=0.1557 [23].  

In addition, we concur with other investigators [36, 46, 50, 51, 54] that complete mixing and controlling 

segregation is as critical to percolation as is particle compaction.  In particular, we found for the purposes 

of molecular dynamics simulation, it was necessary to mix the particles with sufficient interstitial space to 

allow complete mixing, but then to partially compact the particles just below glass transition to allow the 

particles potential energy to relax before applying final compaction to reach the target packing fractions of 

64 %, 67.5 %, and 73 % for RH/RE=1, 2, 3 respectively.    
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This study confirms the hypothesis that both decreasing the particle size of the nonconductive phase 

relative to the conductive phase and some sort of adhesion and or linking between the conductive and non-

conductive phases will maximize the electromechanical contact between the phases while minimizing the 

undesirable effect of electrical percolation in the conductive phase.    

The results of this study were confined to a granular model where all particles were modeled as spheres 

and particle deformation was minimized (approximating hard-sphere conditions) with a large Leonard-

Jones potential energy well depth.  Therefore, future studies could involve addressing what happens when 

the particles deviate from spherical geometry as occurs with sintering and how friction or other adhesive 

forces affects the conductive phase percolation threshold in magnetoelectric composites.  Further studies 

may involve magnetostrictive or piezoelectric materials made of polymers or the addition of a third phase 

of polymers or a third particle phase to act as a catalyst or binding agent between E and H phases. 
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