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Abstract 

Damage evolution of notched composite laminates is analysed in this work using a discrete 

damage model, which estimates matrix damage evolution and fibre failure. The fibre damage is 

regularized with a Weibull distribution, and a Regula Falsi method has been used to improve 

numerical convergence. The model is compared and validated with several experimental results 

taken from the scientific literature, which consider different materials, laminate stacking 

sequences and specimen geometries. A good correlation has been found for the failure strength 

and the stress-strain curve of notched and un-notched laminates subjected to in plane loads. The 

influence of the Weibull modulus on the matrix and fibre damage evolution, and the failure 

strength, is analysed. 
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1. Introduction 

Failure analysis of open-hole laminates is an important subject in structural design. This 

problem has been extensively studied in the past, and continues to be studied nowadays 

due to its complexity [1-6]. The presence of a hole in a laminate is associated with stress 

concentration and out-of-plane stresses. These two phenomena produce a change in the 

failure mechanisms and a failure strength reduction of the laminate, compared to a 

laminate without a hole. 

In the breakage of an open-hole laminate subjected to in-plane loads, several failure 

mechanisms can be observed: matrix cracking, fibre breakage, delamination etc. The 

failure mechanism which controls the breaking of the laminate depends on a large 

number of parameters as: material properties, laminate size and thickness, hole 

diameter, stacking sequence, ply thickness, width/diameter ratio, etc. 

Fibre failure is a stochastic process and can be analysed using a probabilistic theory. 

When a single fibre breaks, a transfer of load to nearby fibres appears. Then, these 

fibres are subjected to a higher level of stress which increases their probability of 

failure. Thus, successive fibre failures may appear in the laminate until the structure 

fails completely [7]. Typically, fibre failure can be modelled with a Weibull 

distribution, both in static and fatigue problems [8-11]. The main parameter in this 

distribution is the Weibull modulus, which control the size of the distribution. The 

Weibull modulus is a material property and it is determined by experimental tests. This 

parameter is not easy to be determined experimentally, requiring a large number of 

tests, even higher than one hundred [8]. In the scientific literature, it is assumed that the 

most common values for the Weibull modulus of the fibres are between 3 and 9 

depending on the type of fibre material [12]. 

Matrix cracking is an important failure mechanism, because although it does not 

produce the total breakage of the laminate, it degrades their mechanical properties and 

induces other failures modes, as delamination. Although, delamination is one of the 

main failure mechanisms in some open-hole laminates, as in laminates with ply level 

scaling [5], it is not relevant in other laminates, for example in laminates with 

sublaminate level scaling [13]. Matrix cracking is a complex phenomenon difficult to be 

modelled. Usually this is the first failure mode that appears in laminates with plies 

perpendicular to the load direction [10, 14-15]. The crack is initiated in defects of the 

interface fibre-matrix [16], these defects grow and coalesce producing an intralaminar 

crack transverse to ply thickness and parallel to fibre direction. 

Failure strength in open-hole laminates has been estimated using analytical and 

numerical models [5, 6, 9, 17, 18]. Although analytical models, as the proposed by 

Whitney and Nuismer [17], are broadly applied in design with good results, more 

sophisticated models are needed to estimate the damage evolution. To model the 

evolution of damage in laminate composites, Fracture Mechanics or Continuous 

Damage Mechanics models have been used [13, 15, 19]. An alternative to these models 

are the Discrete Damage Models (DDM). Among these models, the proposed by 
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Barbero-Cortes has the advantage of modeling the matrix cracking with a single state 

variable [20].  

In general, whatever of the previous models provides a criterion to predict the instant at 

which the failure of the structure takes place; for example, the point of maximum stress 

before a significant drop on the load-displacement curve is observed [5]. Other 

possibility is to define the failure at the point where a percentage of the maximum stress 

is achieved [21] 

In this work, the behaviour of open-hole laminates subjected to in-plane loads are 

analysed using Barbero-Cortes DDM model. To improve the numerical convergence of 

this model, a Regula Falsi method is implemented in the matrix cracking evolution. 

Therefore, a new validation of the model needs to be carried out with experimental data 

taken from the literature, using the failure strength and laminate stiffness as variables of 

estimation. The failure strength of the laminates is estimated by three different 

criterions: Design Criterion, Local Criterion and Macro Criterion. Finally, the influence 

of the Weibull modulus on the failure strength and damage evolution of open-hole 

laminates is studied. 

2. Model description 

The discrete damage model (DDM) proposed by Barbero and Cortes in [20] is selected 

to study matrix cracking in a laminate. The method has been extended to include fibre 

failure [22]. The fibre failure is incorporated to the method through a simple fibre 

damage model that only requires one additional material property. The combined 

formulation is mesh independent and it has been shown to predict damage localization 

and laminate failure of symmetric laminates under general loads. The proposed 

procedure was implemented in a user general section (UGENS) in Abaqus [23].  

In this section, a detailed description of the computational implementation of the 

method is shown. The original implementation used a modified return mapping 

algorithm (RMA) to estimate the growth of the crack densities in each lamina. In this 

work, a Regula Falsi method is proposed to achieve convergence for plies crack 

density. The original DDM described in [20] does not take into account fibre failure; 

therefore a short description of the fibre damage model presented in [22] is done first. 

The second part of this section presents the DDM formulation considering fibre 

damage. 

 

2.1. Fibre failure model 

The stochastic fibre strength can be represented by a Weibull distribution. If a shear lag 

model is used for the fibre-matrix interaction near fibre breaks, the amount of damage in 

the form of fibre breaks can be estimated as [12]: 

D1 = 1 − exp [
1

m e
(
σ̃1

F1t
)
m

] ( 1) 
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where m is the Weibull modulus, e is the natural log basis, F1t is the longitudinal tensile 

strength of the unidirectional lamina, and the effective stress σ̃1 is calculated using the 

longitudinal stress: 

σ̃1 =
〈σ1〉

(1 − D1)
 ( 2) 

where 〈x〉 is the McAuley operator that returns the positive part of the argument and is 

used to assure that only tensile stress is used in the calculation. The fibre damage is 

updated only if the effective stress exceeds the tensile hardening threshold g
1t

, which is 

a state variable. Then, the undamaged domain is represented by: 

σ̃1 ≤ g
1t

 ( 3) 

Hence, when Eq. ( 3) is not satisfied, the damage is updated using Eq. ( 1) and the 

threshold is updated as: g
1t

= σ̃1. Fig. 1 shows the algorithm scheme used to implement 

the fibre damage model. 

 

 
Fig.1 Fibre Failure algorithm scheme 

2.2.Matrix cracking model 

When the matrix is cracking, a set of parallel cracks appears. The cracking phenomenon 

can be represented by the crack density λ in each lamina. The crack density is the 
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number of cracks per unit length and it is defined as the inverse of the distance between 

two adjacent cracks: 

λ = 1 2l⁄  ( 4) 

where 2l is the distance between two consecutive cracks length. 

The model is formulated on a representative volume element (RVE), which is chosen as 

the volume enclosed by the mid-surface and top-surface of the laminate, the surfaces 

between two consecutive cracks 2l, and a unit length along the fibre direction parallel to 

the cracks [22]. 

 

The DDM works with the average thickness of the variables. A thickness average is 

defined as: 

φ̂ =
1

h
∫φ

 

h

dx3 ( 5) 

where hat denotes an average quantity and h represents the thickness over which the 

average is taken. Therefore, the constitutive equation and the equilibrium equations can 

be written in terms of the average variables. 

Damage in the form of cracks is analysed as being discrete with crack density λk and 

because the discrete nature of the cracks is included, the material between cracks only is 

affected by fibre damage. Then, the stiffness Q1
(k)

 in the coordinates of ply k is 

calculated in terms of its fibre damage value D1
(k)

 and undamaged moduli as: 

Q1
(k)

=

[
 
 
 
 (1 − D1

(k)
) Q̅11

(k)
Q̅12

(k)
0

Q̅12
(k)

Q̅22
(k)

0

0 0 Q̅66
(k)

]
 
 
 
 

 ( 6) 

where overline denotes undamaged quantities and the variable D1
(k)

 represent the 

longitudinal stiffness reduction of the ply k. The remaining plies have damaged stiffness 

in the coordinated system of lamina k that can be calculated in terms of their previously 

calculated damage values D2,6
(m)

 and the fibre damage D1
(m)

 as follows: 

Q(m) = [T(θ)]−1

[
 
 
 
 (1 − D1

(m)
) Q̅11

(m)
(1 − D2

(m)
) Q̅12

(m)
0

(1 − D2
(m)

) Q̅12
(m)

(1 − D2
(m)

) Q̅22
(m)

0

0 0 (1 − D6
(m)

) Q̅66
(m)

]
 
 
 
 

[T(θ)]−1 ( 7) 

where k and m are labels for the cracked ply and the remaining plies, respectively; 

[T(θ)]−1 is the stress transformation matrix, with the angle θ measured from k to m, 

and D1
(m)

 and D2
(m)

 and D6
(m)

 represent the longitudinal, transverse and shear stiffness 

reduction of the plies m ≠ k.  

 

The equilibrium equations are written and solved in terms of the average variables. 

Therefore, the overall reduced stiffness properties can be estimated applying unit 

normal and shear loads and calculating the induced deformations. In other words, the 

components of the laminate compliance S in the material coordinate system of the 

cracked lamina k are:  
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Q−1(λ) = S(λ) = [{

ε̂1

ε̂2

γ̂12

}

(a)

{

ε̂1

ε̂2

γ̂12

}

(b)

{

ε̂1

ε̂2

γ̂12

}

(c)

] ( 8) 

which have been obtained considering the three unit-load cases: 

{

σ̂1

σ̂2

τ̂12

}

(a)

= [
1
0
0
],    {

σ̂1

σ̂2

τ̂12

}

(b)

= [
0
1
0
],    {

σ̂1

σ̂2

τ̂12

}

(c)

= [
0
0
1
] ( 9) 

On the other hand, the damaged laminate stiffness can be written as: 

Q = Q(k)
h(k)

H
+ ∑ Q(m)

h(m)

H

n−1

m

 ( 10) 

where H is the laminate thickness. 

 

The coefficients of Q(k) can be computed From Eq. ( 10) since the damaged laminate 

stiffness (Q = S−1) is computed from Eq.( 8) and damaged plies stiffness Q(m) are 

known by Eq.( 7). Therefore, the damage variables of the cracked ply D2,6
(m)

 are 

calculated as follows: 

D2
(k)(λk) = 1 − Q22

(k)
Q̅22

(k)
⁄

D6
(k)(λk) = 1 − Q66

(k)
Q̅66

(k)
⁄

 ( 11) 

 

The matrix cracking damage activation function is writing in terms of the energy release 

rate (ERR) associated with crack opening displacements in mode I and mode II, GI and 

GII respectively. 

g(λk) = (1 − r)√
GI(λk)

GIC
+ r

GI(λk)

GIC
+

GII(λk)

GIIC
− 1 ≤ 0 ( 12) 

where r = GIC GIIC⁄  and GIC and GIIC are the critical values for mode I and mode II of 

the ERR. This activation function works as damage initiation and also as damage-

evolution criteria. 

 

The Fig.2 shows the algorithm used to implement DDM. 
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Fig.2. Matrix cracking implementation 

2.3.Matrix cracking evolution 

In ply k, the activation function and matrix cracking damage variables D2,6
(k)

 are both 

univocal functions of its crack density λk.Then, the evolution of matrix cracking 

damage, when matrix cracking is detected, is a function of the increment of crack 

density, that is Ḋ2,6
(k)

(λ̇k). Here, an increment of one variable is defined as, λ̇ ≡ Δλ = λ −

λold. According to the Kuhn-Tucker conditions,  

λ̇k ≥ 0    ;     g(λk) ≤ 0    ;     λ̇kg(λk) = 0 ( 13) 

the values of λ̇k and g(λk) allow to distinguish between two possible states, loading or 

unloading without matrix damage growth, and loading with matrix damage growth.  

The two possible situations can be differentiated by: 

1. Unloading or loading without damage, in the elastic domain. The activation 

function is  g(λk) ≤ 0, therefore the crack density increment must be λ̇k = 0 to 

satisfy Eq. ( 13). 

2. Damage loading. In this state λ̇k > 0 and it implies that g(λk) = 0 by condition ( 

13). 

Matrix cracking is detected in ply k for case 2. At the beginning, the activation function 

takes a value of g(λk) > 0. Then, it is necessary to find the value of the new crack 

density (λ̇k > 0) that returns the activation function to g(λk) = 0. A Regula Falsi 

method is implemented to impose the Kuhn-Tucker conditions. Fig.3 shows the 

algorithm used to implement the Regula Falsi method. 
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Fig.3 Regula Falsi algorithm implemented 

 

2.4.Combined damage algorithm 

Fig. 4 shows the implementation of the combined formulation on a laminate. At the 

beginning, fibre damage is updated in the plies using the fibre failure method described. 

The box with the name Fibre Failure Block uses the algorithm shown in Fig.1. After 

that, the updating process of transversal and shear damage is started. For each ply, the 

activation function is calculated and if g(λk) > 0 the Regula Falsi method is used to 

return g(λk) to zero. Matrix damages are updated with the new crack density calculated. 

The loop over the plies continues until all plies satisfy g(λk) ≤ 0 condition in one cycle. 

In other words, the plies loop stops when nl ≠ 1 (see Fig. 4). 
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Fig. 4. Laminate implementation scheme of the combined formulation. 

 

3. Model Validation 

To improve the numerical convergence of the DDM model, a Regula Falsi method is 

implemented to estimate the matrix cracking evolution. Therefore, a new validation of 

the model is needed. 

3.1.Problem Description 

Notched and un-notched composite plates subjected to uniaxial tensile load are 

analysed. The plates have been discretized with S4 type elements as shown in Fig. 5. 

For notched laminates, the discretization is done so that the element size is 

approximately the same in all geometries studied. For un-notched laminates the plate is 

discretized with 900 elements. 
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Fig. 5. Discretization of notched and un-notched laminates.  

 

To estimate the failure strength of the laminates, three different criterions are used: 

Design Criterion, Local Criterion and Macro Criterion. The first criterion is often used 

for design when the analysis software available does not provide the other two criteria. 

To define each of these three criteria the longitudinal stress curve on 0º plies for the 

element just above the hole is needed (Fig. 6).  

The Design Criterion assumes that the specimen fails when the longitudinal stress in the 

most loaded Gauss point reaches the fibre tensile strength (F1t). The Local Criterion 

considers that the laminate fails when longitudinal stress in the most loaded Gauss point 

decreases to zero, so that the region around the Gauss point is completely damaged. 

Finally, the Macro Criterion assumes that the specimen fails when the maximum load 

and displacement that the numerical algorithm is able to apply are reached, considering 

longitudinal cross softening, cutting, and damage caused by the fibre and matrix, 

respectively. Eventually, the algorithm detects when the stiffness matrix becomes 

singular, which corresponds to Macro Criterion failure.  

 
Fig. 6. Definition of the three criteria used to estimate the failure strength of the notched 

laminates.  

 

In this work, the new formulation of the DDM model is extensively validated with 

several materials and configurations from the literature [12, 13, 24-27, 30-32]. Ten 
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laminates, with six different fibres (T300, T700, AS4, IM7, CCF300, and HTA) and 

nine matrices (1034C, 3502, 3501-6, APC2, 8552, 8911, 5228, 5428, and 6376-C), are 

analysed. The properties of these materials are taken from the literature and are shown 

in Tables 1 and 2. As the actual implementation of the DDM model does not include 

delamination, only laminate lay-ups with experimental evidence in the literature of no 

delamination or ply splitting are selected. 

Table 1. Material properties of the composite materials analysed I 

 
a Estimated [12, (7.39)]  
b [12, ∮ 7.2.1] 
c [12, Table 2.3] 

 

 

Table 2. Material properties of the composite materials analysed II 

Property 
CCF300/5228 

[30] (fv=0.63) 

CCF300/5428 

 [30] (fv=0.63) 

T700/5428 

 [30] (fv=0.63) 

HTA /6376-C 

[31]  

T700/8911 

[32] (fv=0.62) 

𝑬𝟏 (𝑮𝑷𝒂) 137 145 125 139 135 

𝑬𝟐 (𝑮𝑷𝒂) 8.8 9.75 7.8 10 11.41 

𝑮𝟏𝟐 (𝑮𝑷𝒂) 4.4 5.69 5.6 5.2 7.92 

𝝂𝟏𝟐 0.32 0.312 0.32 0.32 0.33 

𝝂𝟐𝟑 0.46 0.44 0.46 0.51 0.33 

𝜶𝟏 (º𝑪
−𝟏) 1.5·10-7 4·10-7 9.7·10-7 -1·10-6 -1·10-6 

𝜶𝟐 (º𝑪
−𝟏) 3.54·10-5 2.5·10-5 2.09·10-5 24·10-6 24·10-6 

𝑮𝑰𝑪 (𝑵/𝒎𝒎) 1.17 a 0.77a 0.85 a 0.26 [17] 0.50 a 

𝑮𝑰𝑰𝑪(𝑵/𝒎𝒎) 2.05 a 1.15a 1.36 a 1.002 [17] 0.70 a 

𝑭𝟏𝒕 (𝑴𝑷𝒂) 1744 1858 2450 2170 2600 

𝑭𝟏𝒄 (𝑴𝑷𝒂) 1230 1318 1210 1600 1422 

𝑭𝟐𝒕 (𝑴𝑷𝒂) 81 69 65 73 60.3 

Property 
T300/1034-C 

[27] 

AS4/3502 

[24] 

AS4/3501-6 

[25] (fv=0.6) 

AS4/APC2 

[25] (fv=0.6) 

IM7/8552 

[26] (fv=0.6)  

IM7/8552 

[13] (fv=0.6) 

𝑬𝟏 (𝑮𝑷𝒂) 146.8 143.9 123 112 161 171.42 

𝑬𝟐 (𝑮𝑷𝒂) 11.4 11.9 9.6 11 11.4 9.08 

𝑮𝟏𝟐 (𝑮𝑷𝒂) 6.1 6.7 4.8 6.2 5.17  5.29 

𝝂𝟏𝟐 0.3 0.326 0.31 0.32 0.32  0.32 

𝝂𝟐𝟑 0.427 0.44  0.43 0.44 0.44 0.44[6] 

𝜶𝟏 (º𝑪
−𝟏) -1·10-6 -0.89·10-6 -1·10-6 40.2·10-6 [11] 0 -5.5·10-6 

𝜶𝟐 (º𝑪
−𝟏) 26·10-6 23·10-6 21.6·10-6 40.2·10-6 [11] 1·10-5 25.8·10-6 

𝑮𝑰𝑪 (𝑵/𝒎𝒎) 0.228 0.358a 0.59 a 0.54 a 0.2 0.2774 

𝑮𝑰𝑰𝑪(𝑵/𝒎𝒎) 0.455 0.396a 0.89 a 3.65 a 1 0.7879 

𝑭𝟏𝒕 (𝑴𝑷𝒂) 1730 1862 1600 2000 2806[13] 2326.2 

𝑭𝟏𝒄 (𝑴𝑷𝒂) 1379 1482 1480[11] 1080 1200 1200.1 

𝑭𝟐𝒕 (𝑴𝑷𝒂) 66.5 52 60 73.1 60[13] 62.3 

𝑭𝟐𝒄 (𝑴𝑷𝒂) 268.2 207 200[11] 196 185[13] 199.8 

𝑭𝟔 (𝑴𝑷𝒂) 58.7 65 80.7 190 90[13] 92.3 

𝒕𝒕 (𝒎𝒎) 0.8 b 0.8 b 0.8 b 0.8 b 0.8 b 0.8 b 

𝒕𝒌 (𝒎𝒎) 0.1308 0.1308[9]  0.134[12] 0.125[12] 0.125[13] 0.131 

𝒎 3c 4 c 4 c 5 c 6 c 5 c 
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𝑭𝟐𝒄 (𝑴𝑷𝒂) 245 229 220 290 241 

𝑭𝟔 (𝑴𝑷𝒂) 120 102 111 83 94 

𝒕𝒕 (𝒎𝒎) 0.8 b 0.8 b 0.8 b 0.8 b 0.8 b 

𝒕𝒌 (𝒎𝒎) 0.125 0.125  0.125 0.13 0.1125 

𝒎 4c 3 c 3 c 6 c 5 c 

a Estimated [12, (7.39)]  
b [12, ∮ 7.2.1] 
c [12, Table 2.3] 

 

3.2.Results 

The experimental failure strength of notched and un-notched laminates [13, 24-27, 30-

32] is compared with numerical results obtained from DDM using the 3 criteria 

mentioned before (Tables 3 and 4). 

Table 3. Failure strength for notched laminates. 

Material Stacking sequence 

𝑹 

(mm) 

𝑾 

(mm) 

Exp. 

𝝈 (𝑴𝑷𝒂) 

Num. Design 

Criterion 

Num. Local 

Criterion 
Num. Macro Criterion 

𝝈 

(MPa) 

Error 

(%) 

𝝈 

(MPa) 

Error 

(%) 

𝝈 

(MPa) Error (%) 

T300/1034-C [4] [𝟎/±𝟒𝟓/𝟗𝟎𝟕]𝒔 3.175 25.4 160 132.59 17.13 162.12 1.33 190.38 18.99 

AS4/3502 [4] [𝟎/𝟗𝟎/±𝟒𝟓]𝒔 3.81 25.4 326 283.09 13.16 313.31 3.89 313.31 3.89 

AS4/3501-6 [5] [𝟒𝟓/𝟗𝟎/−𝟒𝟓/𝟎]𝟐𝒔 3.175 38.1 
341 

(5.28%) 
255.27 25.14 342.76 0.52 364.60 6.92 

 AS4/APC2 [5] [−𝟒𝟓/𝟎/𝟒𝟓/𝟗𝟎]𝟐𝒔 3.175 38.1 
357 

(8.96%) 
318.84 10.69 361.84 1.36 522.56 46.38 

IM7/8552 [6] 

[𝟒𝟓/𝟗𝟎/−𝟒𝟓/𝟎]𝟐𝒔 3.175 32 
438 

(2.44%) 
395.03 9.81 439.19 0.27 439.19 0.27 

[𝟒𝟓/𝟗𝟎/−𝟒𝟓/𝟎]𝟒𝐬 3.175 32 
433 

(2.3%) 
395.04 8.77 436.38 0.78 506.78 17.04 

IM7/8552 [7] [𝟗𝟎/𝟎/±𝟒𝟓]𝟑𝒔 5 60 
373.7 

(3.8%) 
337.59 9.66 378.36 0.12 430.29 15.14 

CCF300/5228 [8] [𝟒𝟓/𝟎/−𝟒𝟓/𝟗𝟎]𝟑𝒔 3 36 325 260.43 19.87 303.59 6.59 324.99 0.003 

CCF300/5428 [8] [𝟒𝟓/𝟎/−𝟒𝟓/𝟗𝟎]𝟑𝒔 3 36 375 302.37 19.37 375.76 0.20 392.79 4.74 

T700/5428 [8] [𝟒𝟓/𝟎/−𝟒𝟓/𝟗𝟎]𝟑𝒔 3 36 517 406.42 21.39 497.26 3.82 515.92 0.21 

T700/8911 [16] [𝟎/𝟒𝟓/𝟗𝟎/−𝟒𝟓]𝟐𝒔 5 25 401 364.87 9.01 399.98 0.25 399.98 0.25 

 

In all cases, the Design Criterion provides conservative results but its accuracy is not 

very good, being the best a 6.52%, and in most cases exceeds 10%. Although the Macro 

criterion shows an excellent approximation in some cases (for example for 

CCF300/5228 for which the error is practically nil) in other cases the approach is not 

good (as for AS4/APC2 for which the error is 46.38 %). The Local criterion shows very 

small differences with the experimental data in all cases, so it could be considered the 

most appropriate for use in combination with the DDM model to estimate the failure 

strength of materials with different types of fibres and matrices, both thermoset (epoxy) 

and thermoplastic (PEEK). The largest difference observed with the Local criterion is 

6.59%. Although for some of the laminates the Local criterion provides unconservative 

results; the differences with the experimental values are lower than the experimental 

scatter, therefore providing an accurate estimation. 
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Since only three of the laminates shown in Table 3 provide experimental results of un-

notched failure strength, three stacking sequences of HTA/6376-C, not included in 

Table 3, are analysed to extend the DDM model validation. In un-notched laminates, no 

stress concentration appears, so the failure estimated by the three criteria coincide, and 

thus a single predicted failure strength value is shown in Table 4, compared to the 

corresponding experimental value from the literature. For un-notched laminates, the 

differences are smaller than for notched laminates, being the largest 4.49%. 

 

Table 4. Failure strength for un-notched laminates. 

Material Stacking sequence 

𝑾 

(mm) 

Experimental 

𝝈 (𝑴𝑷𝒂) 

Numerical  

𝝈 (MPa) 
Error (%) 

AS4/3501-6 [5] [𝟒𝟓/𝟗𝟎/−𝟒𝟓/𝟎]𝟐𝒔 38.1 660 (6.80%) 649.95 1.52  

AS4/APC2 [5] [−𝟒𝟓/𝟎/𝟒𝟓/𝟗𝟎]𝟐𝒔 38.1 792 (2.78%) 792.45 0.06 

IM7/8552 [7] [𝟗𝟎/𝟎/±𝟒𝟓]𝟑𝒔 12 845.1 (1.29%) 854.35 1.09 

HTA/6376-C 

[9] 

[𝟒𝟓/𝟎/−𝟒𝟓/𝟗𝟎]𝟑𝒔 36 710 (2.4%) 708.49 0.21 

[𝟗𝟎/𝟎]𝟒𝒔 36 1110 (1.5%) 1118.1 0.73 

[𝟗𝟎/𝟎]𝟐𝒔 36 1060 (5.2%) 1107.6 4.49 

 

In some cases, the literature provides experimental stress-strain curves [8, 16], which 

can be compared with the evolution of the overall stiffness of the laminate with the 

DDM model. The comparison between numerical and experimental results of four 

different materials is shown in Fig. 7. The differences between numerical and 

experimental stiffness are less than 3.13% (Fig. 7). These curves are linear until failure, 

typical of laminates with brittle fibre dominated failure, with little or non delamination 

or fibre splitting.  

 

Therefore, the DDM model can be a useful tool to estimate the failure strength and 

stiffness in laminates with and without stress concentrations subjected to in-plane loads. 

The model is applicable to composites with different properties and stacking sequences, 

when the failure is not controlled by delamination or ply splitting.  

 

 
a)                  b)  
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c)                  d)  

Fig. 7. Comparison between numerical and experimental applied stress–strain curve for: a) 

CCF300/5228 [30], b) CCF300/5428 [30], c) T700/5428 [30] and d) T700/8911 [32].  

 

4. Influence of Weibull modulus on laminate failure 

The fibre failure of the laminate is associated to the damage parameter 𝐷1 (Eq. ( 1)), 

defined with a Weibull distribution of two parameters [12, Eq. 8.8]. The width of this 

distribution is controlled by the Weibull modulus (m). For un-notched specimens, m is 

used as the true Weibull modulus of the fibre tow, whereas for notched specimens m is 

used also as a regularization parameter to obtain a smooth distribution of damage across 

the specimen. 

In this work, the influence of the Weibull modulus on matrix and fibre damage 

evolution and on failure strength of notched and un-notched laminates is analysed. The 

values of m studied are between 3 and 9, being this the most common range of variation 

according to the literature [12, Table 2.3].  

To study the influence of m, notched and un-notched laminates with [90/0/±45]3𝑠 

stacking sequence of IM7/8552 are selected. Fig. 8 shows the influence of m on the 

applied stress-strain curve, the longitudinal stress on 0º plies (measured in the most 

loaded Gauss point of the element just above the hole) and the failure strength of the 

laminate. The width of the laminates is 60 mm and the radius of the hole in the notched 

laminate is 5 mm. 

   a)                                                  b)                                                 c) 
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Fig. 8. Influence of Weibull modulus for notched and un-notched [0/90/45/-45]s laminate: a) 

Applied stress over the laminate, b) Failure strength vs Weibull moduls and c) longitudinal 

stress on 0º plies. 

 

For both notched and unnotched laminates, there is no significant influence of Weibull 

modulus on the overall stiffness of the laminate, Fig.8a. Increasing the value of m, the 

maximum applied stress and strain that can be applied in notched and un-notched 

laminates decrease.  In Fig. 8.b, a reduction of 28.59% in failure strength is observed 

when the modulus increases from 3 to 9 for the notched laminate while a reduction of 

16.17% is observed for the un-notched laminate. Therefore, the effect of m is more 

significant in laminates with stress concentrations.  

 

When the Weibull modulus decreases, the Weibull distribution of fibre strength is 

wider. That means there are more fibres that have a high strength, and more that are 

very weak. On the analysis, this produces a wider damage area. That reduces the 

damaged modulus of the 0º laminas over a wider area. Then, it takes more applied strain 

to get the most solicited Gauss point to reach the tensile strength of the ply in fibre 

direction (Fig. 8.c). In the meantime, more strain means the rest of the specimen is 

loaded to a higher strain, and that means it takes more load. The macroscopic effects are 

lower notch sensitivity and higher failure load, Fig.8b. 

Fig. 8.c shows that for low applied strains, below 0.4%, there is no significant influence 

of the Weibull modulus. Above this strain value, for higher values of m the slope of the 

curve increases. In addition, more stress concentration around the edge of the hole 

appears when the value of m increase. 

 

Longitudinal damage on 0º plies near the edge of the hole, corresponding to fibre failure 

are shown in Fig. 9. As the Weibull modulus increase, the extension of the damage area 

around the edge of the hole decrease, while the stress concentration increase. This 

behaviour is also observed on 90º and ±45º plies, with the value of damage reached five 

orders and one order of magnitude lower than the one reached on 0º plies. This 

behaviour is consistent with the narrower variation in the strength of the fibres afforded 

by the higher value of m.  

For notched laminates, no influence of m is observed on the initiation of matrix damage 

in the 90º plies. The onset of matrix damage is insensitive to the value of m. During 

evolution, an increase in the Weibull modulus produces a decrease of crack density on 

the element analysed and therefore the damaged area round the hole is smaller. 

Additionally, no matrix cracking is observed in the 0º and ±45º plies. For unnotched 

laminates, crack density is uniform over the entire specimen, so m has no influence. 
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Fig. 9. Longitudinal damage on 0º plies for different values of m (3, 5 and 7 from left to right). 

 

 

 

 

 

5. Conclusions. 

A new algorithm to calculate matrix cracking evolution in the context of the DDM 

models presented. To improve the numerical convergence, a Regula Falsi method is 

proposed.  

 

The new implementation of DDM is validated for notched and unnotched laminates. 

Several materials with different types of carbon fibres and matrices, both thermoset 

(epoxy) and thermoplastic (PEEK) are analysed. Experimental failure strengths and 

applied stress-strain curves from the literature are compared with the results 

obtained with the DDM model. Good approximation is obtained in all the cases 

studied. 

 

Three criteria to estimate the failure strength are compared: design criterion, local 

criterion and macro criterion. The Local criterion provides better results in general 

than the other two criteria when compared with experimental results. Differences in 

failure strength less than 6.6% are observed between the predictions of the local 

criterion and experimental data over a wide variety of laminates, materials, and 

notch geometries. 
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Weibull modulus (m) of the Weibull distribution defined to predict the fibre failure 

of the laminate is used as a regularization parameter in notched laminates. Its 

influence over failure strength, applied stress-strain curve, and longitudinal stress is 

analysed. From the applied stress-strain curve it is observed that the stiffness of the 

laminate is independent of m. An increase in m results in a reduction of the failure 

strength of the laminate, being the influence of m more significant for macro 

criterion. For larger values of m, more stress concentration and less failure strength 

are observed. An increase in m results in a decrease of the damage extension area 

for 0º plies around the hole. 
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FIGURE CAPTION 

Fig.1. Fibre Failure algorithm scheme 

Fig.2. Matrix cracking implementation 

Fig.3. Regula Falsi algorithm implemented. 

Fig. 4. Laminate implementation scheme of the combined formulation. 

Fig. 5. Discretization of notched and un-notched laminates.  

Fig. 6. Definition of the three criteria used to estimate the failure strength of the notched 

laminates.  

Fig. 7. Comparison between numerical and experimental applied stress–strain curve for: 

a) CCF300/5228 [8], b) CCF300/5428 [8], c) T700/5428 [8] and d) T700/8911 [16].  

Fig. 8. Influence of Weibull modulus for notched and un-notched [0/90/45/-45]s 

laminate: a) Applied stress over the laminate, b) Failure strength vs Weibull moduls and 

c) Longitudinal stress on 0º plies. 

Fig. 9. Longitudinal damage on 0º plies for different values of m (3, 5 and 7 from left to 

right). 

 

TABLE CAPTION 

Table 1. Material properties of the composite materials analysed I 

Table 2. Material properties of the composite materials analysed II 

Table 3. Failure strength for notched laminates. 

Table 4. Failure strength for un-notched laminates. 

 


