@INPROCEEDINGS{cst2014:barb,
 AUTHOR = {Barbero, E. J. and Madeo, A. and Zagari, G. and Zinno, R. and Zucco, G.},
 TITLE = {A Mixed Finite Element for Static and Buckling Analysis of Laminated Folded Plates},
 BOOKTITLE = {The Twelfth International Conference on Computational Structures Technology},
 EDITOR = {Topping, B. H. V. and Iványi, P.},
 PUBLISHER = {Civil-Comp Press},
 ADDRESS = {Stirlingshire, United Kingdom},
 NOTE = {paper 214},
 YEAR = 2014,
 URL = "http://dx.doi.org/10.4203/ccp.106.214"
}
A mixed finite element for linear and nonlinear analysis of laminated folded plates is presented in this paper. The mixed formulation affords accurate prediction of stresses, which are needed for damage and failure analysis. Static condensation of the stress parameters results in a displacement-only element that is easy to integrate into commercial packages via their user element feature. The linear element is easily extended for nonlinear analysis by using a corotational formulation. Numerous test cases demonstrate the performance of the element by comparison with existing and, or costlier numerical solutions from the literature. The element is free from spurious modes employing full integration and an incompatible displacement mode on the contour displacements.

Keywords: Laminated folded plates, mixed finite elements, corotational kinematics.

1 Introduction

Laminated composite folded plates are used in many technical fields including pultruded structural shapes in civil engineering, stiffened panels in aerospace structures, etc. Composite materials are used for weight saving, resulting in slender structures that are susceptible to buckling. Open sections are susceptible to buckling mode interaction. Since stiffened panels are edge supported, they are capable of carrying post-critical loads, which must be calculated using costly continuation methods such as the Riks method. Furthermore, a major portion of the computational time is employed in the formulation of the stiffness and geometric stiffness matrices. Therefore, interest in accurate yet computationally inexpensive elements is always desirable.
2 Geometrically linear element

2.1 Geometry

The element is described by four nodes in the X,Y, plane of the global Cartesian coordinate system (c.s.) X, Y, Z. The element midsurface is mapped onto a unit element with midsurface coordinates ξ, η, defined by the nodal coordinates Xᵢ, Yᵢ, i = 1, ..., 4 [1, 2] and

\[
X = a_0 + a_1 \xi + a_2 \xi \eta + a_3 \eta \\
Y = b_0 + b_1 \xi + b_2 \xi \eta + b_3 \eta
\]

(1)

In order to cancel the rigid part of the element distortion, a local c.s. x, y is defined by the transformation

\[
\begin{bmatrix} x \\ y \end{bmatrix} = R^T \begin{bmatrix} X - a_0 \\ Y - b_0 \end{bmatrix}
\]

(2)

where a₀, b₀, are the coordinates of the element centroid. The rotation matrix is

\[
R = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, \quad \alpha = \arctan \left(\frac{a_3 - b_1}{a_1 + b_3} \right)
\]

(3)

The Jacobian of the coordinate transformation and its average are

\[
J^G = \begin{bmatrix} X_\xi & X_\eta \\ Y_\xi & Y_\eta \end{bmatrix} = \begin{bmatrix} (a_1 + a_2 \eta) & (a_3 + a_2 \xi) \\ (b_1 + b_2 \eta) & (b_3 + b_2 \xi) \end{bmatrix}
\]

\[
\bar{J}^G = \frac{1}{4} \int_{\xi=-1}^{1} \int_{\eta=-1}^{1} J^G \, d\xi \, d\eta = \begin{bmatrix} a_1 & a_3 \\ b_1 & b_3 \end{bmatrix}
\]

(4)

The average can be decomposed into an orthogonal rotation and a symmetric matrix

\[
\bar{J}^G = R \bar{J} \quad ; \quad \bar{J} = \begin{bmatrix} a & c \\ c & b \end{bmatrix}
\]

2.2 Assumed stress

The stress resultants t can be written in terms of eighteen stress parameters \(\beta_e \), including nine \(\beta_m \) and nine \(\beta_f \), as follows

\[
t = B \beta_e = \begin{bmatrix} B_m & 0 \\ 0 & B_f \end{bmatrix} \begin{bmatrix} \beta_m \\ \beta_f \end{bmatrix}
\]

(5)

The 18 parameters correspond to the deformation modes of the element, that is, 24 degrees of freedom (dof) minus 6 rigid body motions. Since the stress field satisfies the equations of equilibrium in the element, i.e., the stresses are self equilibrating,
then, the stress resultants \mathbf{t} can be written in terms known shape functions $\mathbf{B}_m, \mathbf{B}_f$ as follows.

Membrane:

$$\mathbf{B}_m = \begin{bmatrix} 1 & 0 & 0 & y & 0 & x & 0 & y^2 & -2a^2xy \\ 0 & 1 & 0 & 0 & x & 0 & y & -x^2 & 2b^2xy \\ 0 & 0 & 1 & 0 & 0 & -y & -x & 0 & a^2y^2 - b^2x^2 \end{bmatrix}_{3 \times 9}$$ \hfill (6)

Flexural (first three rows) and intralaminar (last two rows):

$$\mathbf{B}_f = \begin{bmatrix} \mathbf{B}_b \\ \mathbf{B}_s \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x & 0 & y & 0 & xy & 0 \\ 0 & 1 & 0 & 0 & x & 0 & y & 0 & xy \\ 0 & 0 & 1 & 0 & y \bar{c} & x/\bar{c} & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -\bar{c} & 0 & 0 & -y & 0 \\ 0 & 0 & 0 & 0 & -1/\bar{c} & -1 & 0 & -x & 0 \end{bmatrix}_{5 \times 9}$$ \hfill (7)

with $\bar{c} = a^2/b^2$.

2.3 Assumed displacements

Since the stresses are self equilibrating, the internal work can be computed as a contour integral. Therefore, the displacements need to be interpolated only along the contour. A one-dimensional c.s. $-1 \leq \zeta \leq 1$ is defined along each straight side of the element.

For each element side Γ_k connecting nodes i and j counterclockwise, we define the following quantities.

The midpoint on the side:

$$\Xi_k = \begin{bmatrix} \Xi_{kx} \\ \Xi_{ky} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x_j + x_i \\ y_j + y_i \end{bmatrix}$$ \hfill (8)

One half the length of the side:

$$\Delta_k = \begin{bmatrix} \Delta_{kx} \\ \Delta_{ky} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x_j - x_i \\ y_j - y_i \end{bmatrix}$$ \hfill (9)

The normal to the side:

$$\mathbf{n}_k = \begin{bmatrix} n_{kx} \\ n_{ky} \end{bmatrix} = \frac{2}{L_k} \begin{bmatrix} \Delta_{ky} \\ -\Delta_{kx} \end{bmatrix}$$ \hfill (10)

with $L_k = 2 \sqrt{\Delta_{kx}^2 + \Delta_{ky}^2}$ being the side length. Using a one-dimensional coordinate $-1 \leq \zeta \leq 1$ along Γ_k, points along the element side are located as

$$x = \Xi_{kx} + \Delta_{kx} \zeta , \quad y = \Xi_{ky} + \Delta_{ky} \zeta$$ \hfill (11)
Then, the side displacements are approximated as

\[u_k(\zeta) = u_k^{(l)}(\zeta) + u_k^{(q)}(\zeta) + u_k^{(c)}(\zeta) \]

(12)

where \(k \) is the side number. The first term is linear in the nodal displacements \(u^i, u^j \), where \(i, j \) are the end nodes of side \(k \)

\[u_k^{(l)}(\zeta) = \frac{1}{2} \{ (1 - \zeta)u^i + (1 + \zeta)u^j \} \]

(13)

with \(u^i = \{ u^i_x, u^i_y, u^i_z \}^T \), \(u^j = \{ u^j_x, u^j_y, u^j_z \}^T \)

where the subscript \(3 \times 1 \) indicates the size of the array. The linear part of the displacement is continuous across the element boundary. The second term is quadratic and also continuous across the element boundary

\[u_k^{(q)}(\zeta) = \frac{1}{8} L_k (\zeta^2 - 1) \left\{ \begin{pmatrix} \varphi^i_x - \varphi^j_x \\ \varphi^i_y - \varphi^j_y \end{pmatrix} n_k \right\} \]

3 \times 1

(14)

where

\[\varphi^i = \{ \varphi^i_x, \varphi^i_y \}^T, \quad \varphi^j = \{ \varphi^j_x, \varphi^j_y \}^T \]

(15)

The third term is cubic and incompatible (to prevent rank defectiveness)

\[u_k^{(c)}(\zeta) = \frac{\theta}{4} L_k (\zeta - \zeta^3) \left\{ \begin{pmatrix} n^i_x \\ 0 \end{pmatrix} \right\} \]

3 \times 1

(16)

where \(\theta \) is the average in-plane distortional rotation defined as

\[\theta = \frac{1}{4} \sum_{i=1}^{4} (\varphi^i_z - \varphi_z) \]

(17)

where \(i = 1...4 \) are the nodes of the element and \(\varphi_z \) is the average in-plane rigid rotation calculated as

\[\varphi_z = \mathbf{N}_\theta \mathbf{u}_m \]

(18)

\[\mathbf{N}_\theta = \frac{1}{2\Omega_e} \left[-\Delta_3y, \Delta_4y, 0, -\Delta_1y, \Delta_1z, 0, -\Delta_2y, \Delta_2x, 0, -\Delta_3y, \Delta_3x, 0 \right] \]

(19)

where with \(\mathbf{u}_m = \{ u_{xi}, u_{yi}, \varphi_{zi} \}^T \) collecting the membrane displacements at the nodes \(i = 1...4 \). The rest of the displacements, \(\mathbf{u}_{ef} = \{ u_{xi}, \varphi_{xi}, \varphi_{yi}, \ldots \}^T \) collect the displacements associated to flexural and intralaminar shear at the nodes. The vectors \(\mathbf{u}_m \) and \(\mathbf{u}_{ef} \) represent nodal displacements/rotations describing membrane and flexural behavior, respectively. Finally, bending rotations at the element side are interpolated linearly, as follows

\[\varphi_k(\zeta) = \frac{1}{2} [(1 - \zeta)\varphi_i + (1 + \zeta)\varphi_j] \quad \text{with} \quad \varphi_i = \{ \varphi_x, \varphi_y \}^T \]

(20)
2.4 Mixed element

The Hellinger-Reissner strain energy can be written as

\[\Phi(t, u) = \int_{\Omega} \left(t^T D_t u - \frac{1}{2} t^T S_t t \right) \, d\Omega \]

(21)

where

\[t = \{ t_m \}, \quad u = \{ u_m \}, \quad D = [D_m \ 0] \]

(22)

where the vectors \(t_m \) and \(t_f \) are the membrane stress resultants, and the moment and shear resultants, respectively; \(u_m \) and \(u_f \) are the in- and out-plane kinematical parameters, defined as follows

\[
 t_m = \begin{Bmatrix} N_x \\ N_y \\ N_{xy} \end{Bmatrix}, \quad t_f = \begin{Bmatrix} M_x \\ M_y \\ M_{xy} \\ V_x \\ V_y \end{Bmatrix}, \quad u_m = \begin{Bmatrix} u_x \\ u_y \end{Bmatrix}, \quad u_f = \begin{Bmatrix} \varphi_x \\ \varphi_y \end{Bmatrix}
\]

(23)

where \(N, M, V \) are the membrane, bending, and shear stress resultants, respectively; \(u, \varphi \) are the midsurface strains and rotations, respectively. The corresponding nodal displacements for nodes \(i = 1...4 \) are

\[
 u_{em} = \begin{Bmatrix} u_{xi} \\ u_{yi} \\ \varphi_{zi} \end{Bmatrix}, \quad u_{ef} = \begin{Bmatrix} u_{zi} \\ \varphi_{xi} \\ \varphi_{yi} \end{Bmatrix}
\]

(24)

and the corresponding displacements at any point \(\zeta \) on side \(k \) along the contour

\[
 u_{km}(\zeta) = \begin{Bmatrix} u_{xz} \\ u_{yz} \end{Bmatrix}, \quad u_{kf} = \begin{Bmatrix} u_{zk} \\ \varphi_{xz} \\ \varphi_{yz} \end{Bmatrix}, \quad k = \text{fixed}, \quad -1 \leq \zeta \leq 1
\]

(25)

The strain-displacement differential operators \(D_m \) and \(D_f \) for first order shear deformation (FSDT) kinematics are defined as

\[
 D_m = \begin{bmatrix} \partial/\partial x & 0 \\ 0 & \partial/\partial y \\ \partial/\partial x & \partial/\partial y \end{bmatrix}, \quad D_f = \begin{bmatrix} 0 & 0 & -\partial/\partial x \\ 0 & \partial/\partial y & 0 \\ \partial/\partial x & 0 & 1 \\ \partial/\partial y & -1 & 0 \end{bmatrix}
\]

(26)

The 8×8 stiffness matrix \(E \) and compliance matrix \(S = E^{-1} \) can be written as

\[
 E = \begin{bmatrix} E_m & E_{mf} & 0 \\ E_{mf}^T & E_f & 0 \\ 0 & 0 & E_s \end{bmatrix}, \quad S = \begin{bmatrix} S_m & S_{mf} \\ S_{mf}^T & S_f \\ 0 & 0 & S_s \end{bmatrix}
\]

(27)
where S_m, S_{mf}, S_f, S_s are called α, β, γ, h in [3, Eq. (6.20)]. Note that $S = E^{-1}$ and $S_s = E_s^{-1}$, but $S_m \neq E_m^{-1}$, and so on.

Since the stresses satisfy equilibrium

$$
\int_{\Omega} t^T D u \, d\Omega = \int_{\Gamma} t^T N^T u \, d\Gamma = \int_{\Gamma} t^T N^T_m u_m \, d\Gamma + \int_{\Gamma} t^T N^T_f u_f \, d\Gamma
$$

(28)

where the matrix

$$
N = \begin{bmatrix} N_m & 0 \\ 0 & N_f \end{bmatrix}
$$

(29)

contains the membrane N_m and bending N_f components of the outward unit normal to the contour.

Both the displacements u and tractions t are discretized on terms of shape functions

$$
t = B \beta, \quad u = U u_e
$$

(30)

where B is given by (6)–(7) and U is implicity given by (13)–(16). Then, performing the integration (21) we get

$$
\Phi_e = \beta^T_e Q_e u_e - \frac{1}{2} \beta^T_e H_e \beta_e
$$

(31)

where D_e, H_e are the kinematics and compliance matrix of the element, respectively.

The compliance matrix can be written as follows

$$
H_e = \int_{\Omega_e} B^T S B \, d\Omega_e = \begin{bmatrix} H_m & H_{mb} \\ H_{sym} & H_b + H_s \end{bmatrix}
$$

(32)

where

$$
H_m = \int_{\Omega_e} \{ B^T_m S_m B_m \} \, d\Omega_e, \quad H_{mb} = \int_{\Omega_e} \{ B^T_m S_{mb} B_b \} \, d\Omega_e
$$

$$
H_b = \int_{\Omega_e} \{ B^T_b S_b B_b \} \, d\Omega_e, \quad H_s = \int_{\Omega_e} \{ B^T_s S_s B_s \} \, d\Omega_e
$$

(33)

and B_m, B_b, B_s are given by (6)–(7).

Using (28), the kinematics matrix is evaluated through contour integration

$$
Q_e = \int_{\Omega_e} B^T D U \, d\Omega_e = \int_{\Gamma_e} B^T N^T U \, d\Gamma_e
$$

(34)

where the contour integral can be broken into four sides $k = 1 \ldots 4$ as follows

$$
Q_e = \begin{bmatrix} Q_m & 0 \\ 0 & Q_f \end{bmatrix}, \quad Q_m = \sum_{k=1}^{4} Q_{mk}, \quad Q_f = \sum_{k=1}^{4} Q_{fk}
$$

(35)

where Q_{mk} and Q_{fk} are both 9×12 matrices, defined by the following equations
\[\beta_m^T Q_{mk} u_{em} = \int_{-1}^{1} T_{mk}(\zeta) N_{mk}^T u_{mk}(\zeta) \, d\zeta \]
\[\beta_f^T Q_{fk} u_{ef} = \int_{-1}^{1} T_{fk}(\zeta) N_{fk}^T u_{fk}(\zeta) \, d\zeta \] (36)

with the components of the unit normal to the element side are written as follows as follows

\[N_{mk} = \begin{bmatrix} n_{kx} & 0 & n_{ky} \\ 0 & n_{ky} & n_{kx} \end{bmatrix}, \quad N_{fk} = \begin{bmatrix} 0 & 0 & 0 & n_{kx} & n_{ky} \\ n_{kx} & n_{ky} & 0 & 0 & 0 \\ -n_{ky} & 0 & -n_{kx} & 0 & 0 \end{bmatrix} \] (37)

or

\[Q_m = \sum_{k=1}^{4} \int_{-1}^{1} B_{mk}^T N_{mk} U_{mk} \, d\zeta \]
\[Q_f = \sum_{k=1}^{4} \int_{-1}^{1} B_{fk}^T N_{fk} U_{fk} \, d\zeta \] (38)

where \(B_{mk} \) and \(B_{fk} \) correspond to \(B_m \) and \(B_f \) evaluated on the side \(k \) while \(U_{mk} \) and \(U_{fk} \) are defined as

\[U_{mk} = \frac{\partial u_{mk}}{\partial u_{em}}, \quad U_{fk} = \frac{\partial u_{fk}}{\partial u_{ef}} \] (39)

In particular, for side \(k = 1 \) (nodes \(i = 1 \) and \(j = 2 \)), we have

\[U_{m1} = \begin{bmatrix} \frac{1-\zeta}{2} & -\frac{L_k n_{kx} \Delta_{1k}(\zeta-\zeta^2)}{8 \Omega_e} & 0 \\ \frac{1-\zeta}{2} & 0 & \frac{L_k n_{kx} \Delta_{1k}(\zeta-\zeta^2)}{8 \Omega_e} \\ 0 & \frac{1-\zeta}{2} & \frac{L_k n_{kx} \Delta_{1k}(\zeta-\zeta^2)}{8 \Omega_e} \end{bmatrix} \frac{n_{kx}(\zeta^2-1)}{8 L_k} \frac{n_{ky}(\zeta^2-1)}{8 L_k} \] (40)

\[U_{f1} = \begin{bmatrix} \frac{1-\zeta}{2} & -n_{kx} & \frac{1+\zeta}{2} & n_{kx} & n_{ky} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1-\zeta}{2} & 0 & \frac{1+\zeta}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \] (41)

For other sides the contributions can be obtain by an index permutation in Eqs. (40)-(41).

3 Geometrically non-linear element

Using corotational algebra to describe the element rigid body motion, a linear finite element can be easily made into a geometrically nonlinear one [4]. A corotational frame \(\{ \bar{e}_1, \bar{e}_2, \bar{e}_3 \} \) is next defined with respect to the fixed frame \(\{ e_1, e_2, e_3 \} \)

\[\bar{e}_k = Q(\alpha)e_k, \quad k = 1..3 \] (42)
where the local reference frame is a Cartesian frame \{e_1, e_2, e_3\} defined so that the average Jacobian of the iso-parametric transformation is symmetric. In (42), \(Q\) is a rigid body rotation parametrized by the rotation vector \(\alpha\) according to [5] (see Fig. 1 and [6]) with the origin translated by the vector \(c\).

The displacement and the rotation in the corotational frame \(\bar{u}\) and \(\bar{R}\) can be written

\[
\bar{u} = Q^T (X + d - c) - X, \quad \bar{R} = Q^T R
\]

(43)

where \(u, R\) are the displacement and rotation associated to position \(X\) in the fixed reference frame, respectively. The rotation vectors \(\bar{\psi}, \psi\) represent the rotation tensors \(\bar{R}, R\) with

\[
\bar{\psi} = \log(\bar{R}(\bar{\psi})) = \log (Q^T (\alpha) R(\psi))
\]

(44)

Figure 1: Corotational frame [6].

A corotational frame is defined for each element using the element rotation vector \(\alpha_e\) which is a function of the element dof \(u_e\) in the fixed frame

\[
\alpha_e = \alpha_e(u_e)
\]

(45)

The local dof \(\bar{u}_e\) in the corotational frame are related to \(u_e\) by the geometrical transformation

\[
\bar{u}_e = g(u_e)
\]

(46)

where \(g\) collects the corotational transformations of displacements (43) and rotations (44), rearranged in terms of the definition of local dof \(\bar{u}_e\) of the element.

A linear finite element with energy (21) can be transformed into a geometrically nonlinear element by introducing a corotational description, i.e., referring the element dof in eq. (21) to the corotational frame as follows

\[
\Phi_e(\beta_e, u_e) = \beta_e^T D_e g(u_e) - \frac{1}{2} \beta_e^T H_e \beta_e
\]

(47)
The element dof can be expressed as

\[\mathbf{u}_e = \{ \beta_e, \mathbf{u}_e \}^T \]

(48)

that collects all the dof in a single vector. The later is related to the global configuration vector \(\mathbf{u}_G \) through the standard assemblage procedure

\[\mathbf{u}_e = \mathbf{A}_e \mathbf{u}_G \]

(49)

where the matrix \(\mathbf{A}_e \) implicitly includes the connectivity constraints between elements. For the Hellinger-Reissner formulation used here, the components of \(\mathbf{u}_e \) are the global displacements/rotations of the element nodes plus stress parameters in each element. The stress parameters can be eliminated by static condensation at the element level, leading to a pseudo-compatible system [7].

For nonlinear analysis, the corotational frame is obtained by simply setting the rotation vector equal to the average nodal rotations of element \(e \) in the fixed frame, where \(i = 1...4 \) are the nodes of the element

\[\alpha_e = \frac{1}{4} \sum_{i=1}^{4} \varphi_i \]

(50)

4 Results

To illustrate some of the capabilities of the proposed element, the box beam shown in Figure 2 is analyzed (see also [8]) and the predictions compared with CADEC [9] and Abaqus [10]. The side flanges and webs have a width \(a = 2.5 \text{ mm} \) and the top flange is \(2a \). Two thickness are considered \(t/a = 3/10, 1/2 \). The ply properties are \(E_1 = 104 \text{ GPa}; E_2 = 10.3 \text{ GPa}; G = 5.15 \text{ GPa}; \nu_{12} = 0.21 \). The laminate stacking sequence is \([0/90/0/90]\). The column is loaded and simply supported at both ends while the side flanges are free. The load is a uniform edge pressure applied at the column ends on either (a) the skin only, or (b) on both skin and stiffener walls. The buckling loads are shown in Table 1 and Figure 2. Additional results are presented at the conference.

5 Conclusions

Static condensation of the stress dof results in an mixed element with 24 displacement dof that exhibits significantly less computational cost than 48-dof displacement-based elements but with comparable accuracy for the same number of global nodes. Furthermore, the corotational approach significantly simplifies the non-linear computations because the nonlinearity is limited to the corotational mapping.
Table 1: Buckling loads (in Newtons) for the box beam loaded axially. The mesh used for the analysis is reported in Fig. 2.

<table>
<thead>
<tr>
<th>Length [mm]</th>
<th>t/a</th>
<th>CADEC Skin Only</th>
<th>MISS-4 S8R</th>
<th>CADEC Skin&Stiffener</th>
<th>MISS-4 S8R</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 3/10</td>
<td>9516</td>
<td>10161</td>
<td>9624</td>
<td>16202</td>
<td>16212</td>
</tr>
<tr>
<td>20 1/2</td>
<td>22970</td>
<td>24284</td>
<td>23528</td>
<td>35720</td>
<td>36620</td>
</tr>
<tr>
<td>200 3/10</td>
<td>264</td>
<td>256</td>
<td>260</td>
<td>1310</td>
<td>1314</td>
</tr>
<tr>
<td>200 1/2</td>
<td>462</td>
<td>444</td>
<td>456</td>
<td>2168</td>
<td>2220</td>
</tr>
</tbody>
</table>

Figure 2: Buckling mode for the box beam loaded axially with uniform edge-pressure and simply supported at both ends on skin only, L=20 mm, a/t=3/10.

6 Acknowledgments

The first author acknowledges the support of the Energy Materials Science and Engineering (EMSE) program at West Virginia University. The remaining authors wish to acknowledge the RISPEISE cooperation project for their financial support.

References

