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Abstract

A mixed finite element for linear and nonlinear analysis of laminated folded plates is

presented in this paper. The mixed formulation affords accurate prediction of stresses,

which are needed for damage and failure analysis. Static condensation of the stress pa-

rameters results in a displacement-only element that is easy to integrate into commer-

cial packages via their user element feature. The linear element is easily extended for

nonlinear analysis by using a corotational formulation. Numerous test cases demon-

strate the performance of the element by comparison with existing and, or costlier

numerical solutions from the literature. The element is free from spurious modes

employing full integration and an incompatible displacement mode on the contour

displacements.

Keywords: Laminated folded plates, mixed finite elements, corotational kinematics.

1 Introduction

Laminated composite folded plates are used in many technical fields including pul-

truded structural shapes in civil engineering, stiffened panels in aerospace structures,

etc. Composite materials are used for weight saving, resulting in slender structures

that are susceptible to buckling. Open sections are susceptible to buckling mode in-

teraction. Since stiffened panels are edge supported, they are capable of carrying

post-critical loads, which must be calculated using costly continuation methods such

as the Riks method. Furthermore, a major portion of the computational time is em-

ployed in the formulation of the stiffness and geometric stiffness matrices. Therefore,

interest in accurate yet computationally inexpensive elements is always desirable.
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2 Geometrically linear element

2.1 Geometry

The element is described by four nodes in the X,Y, plane of the global Cartesian coor-

dinate system (c.s.) X, Y, Z. The element midsurface is mapped onto a unit element

with midsurface coordinates ξ, η, defined by the nodal coordinates Xi, Yi, i = 1, ..., 4
[1, 2] and

X = a0 + a1ξ + a2ξ η + a3η

Y = b0 + b1ξ + b2ξ η + b3η (1)

In order to cancel the rigid part of the element distortion, a local c.s. x, y is defined

by the transformation
{

x
y

}

= RT

{

X − a0
Y − b0

}

(2)

where a0, b0, are the coordinates of the element centroid. The rotation matrix is

R =

[

cosα − sinα
sinα cosα

]

, α = arctan

(

a3 − b1
a1 + b3

)

(3)

The Jacobian of the coordinate transformation and its average are

JG =

[

X,ξ X,η
Y,ξ Y,η

]

=

[

(a1 + a2η) (a3 + a2ξ)
(b1 + b2η) (b3 + b2ξ)

]

J̄
G
=

1

4

∫ 1

ξ=−1

∫ 1

η=−1

JG dξ dη =

[

a1 a3
b1 b3

]

(4)

The average can be decomposed into an orthogonal rotation and a symmetric matrix

J̄
G
= R J̄ ; J̄ =

[

a c
c b

]

2.2 Assumed stress

The stress resultants t can be written in terms of eighteen stress parameters βe, includ-

ing nine βm and nine βf , as follows

t = Bβe =

[

Bm 0
0 Bf

]{

βm

βf

}

(5)

The 18 parameters correspond to the deformation modes of the element, that is, 24

degrees of freedom (dof) minus 6 rigid body motions. Since the stress field satisfies

the equations of equilibrium in the element, i.e., the stresses are self equilibrating,
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then, the stress resultants t can be written in terms known shape functions Bm,Bf as

follows.

Membrane:

Bm =





1 0 0 y 0 x 0 y2 −2 a2 x y
0 1 0 0 x 0 y −x2 2 b2 x y
0 0 1 0 0 −y −x 0 a2 y2 − b2 x2





3×9

(6)

Flexural (first three rows) and intralaminar (last two rows):

Bf =

[

Bb

Bs

]

=













1 0 0 x 0 y 0 x y 0
0 1 0 0 x 0 y 0 x y
0 0 1 0 y c̄ x/c̄ 0 0 0
0 0 0 −1 −c̄ 0 0 −y 0
0 0 0 0 0 −1/c̄ −1 0 −x













5×9

(7)

with c̄ = a2/b2.

2.3 Assumed displacements

Since the stresses are self equilibrating, the internal work can be computed as a contour

integral. Therefore, the displacements need to be interpolated only along the contour.

A one-dimensional c.s. −1 ≤ ζ ≤ 1 is defined along each straight side of the element.

For each element side Γk connecting nodes i and j counterclockwise, we define the

following quantities.

The midpoint on the side:

Ξk =

[

Ξkx

Ξky

]

=
1

2

[

xj + xi

yj + yi

]

(8)

One half the length of the side:

∆k =

[

∆kx

∆ky

]

=
1

2

[

xj − xi

yj − yi

]

(9)

The normal to the side:

nk =

[

nkx

nky

]

=
2

Lk

[

∆ky

−∆kx

]

(10)

with Lk = 2
√

∆2
kx +∆2

ky being the side length. Using a one-dimensional coordinate

−1 ≤ ζ ≤ 1 along Γk, points along the element side are located as

x = Ξkx +∆kx ζ , y = Ξky +∆ky ζ (11)
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Then, the side displacements are approximated as

uk(ζ) = u
(l)
k (ζ) + u

(q)
k (ζ) + u

(c)
k (ζ) (12)

where k is the side number. The first term is linear in the nodal displacements ui, uj ,

where i, j are the end nodes of side k

u
(l)
k (ζ) =

1

2
{(1− ζ)ui + (1 + ζ)uj}3×1 (13)

with ui = {ui
x, u

i
y, u

i
z}

T , uj = {uj
x, u

j
y, u

j
z}

T

where the subscript 3× 1 indicates the size of the array. The linear part of the dis-

placement is continuous across the element boundary. The second term is quadratic

and also continuous across the element boundary

u
(q)
k (ζ) =

1

8
Lk(ζ

2 − 1)

{

(ϕi
z − ϕj

z) nk

−(ϕi − ϕj)T · nk

}

3×1

(14)

where

ϕi = {ϕi
x, ϕ

i
y}

T , ϕj = {ϕj
x, ϕ

j
y}

T (15)

The third term is cubic and incompatible (to prevent rank defectiveness)

u
(c)
k (ζ) =

θ

4
Lk(ζ − ζ3)

{

nk

0

}

3×1

(16)

where θ is the average in-plane distortional rotation defined as

θ =
1

4

4
∑

i=1

ϕi
z − ϕ̄z (17)

where i = 1...4 are the nodes of the element and ϕ̄z is the average in-plane rigid

rotation calculated as

ϕ̄z = Nθuem (18)

Nθ =
1

2Ωe

[−∆4y,∆4x, 0,−∆1y,∆1x, 0,−∆2y,∆2x, 0,−∆3y,∆3x, 0] (19)

where with uem = {uxi, uyi, ϕzi...}
T collecting the membrane displacements at the

nodes i = 1...4. The rest of the displacements, uef = {uzi, ϕxi, ϕyi, ...}
T collect the

displacements associated to flexural and intralaminar shear at the nodes. The vec-

tors uem and uef represent nodal displacements/rotations describing membrane and

flexural behavior, respectively. Finally, bending rotations at the element side are inter-

polated linearly, as follows

ϕk(ζ) =
1

2
[(1− ζ)ϕi + (1 + ζ)ϕj ] with ϕi = {ϕx, ϕy}

T (20)
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2.4 Mixed element

The Hellinger-Reissner strain energy can be written as

Φ(t, u) =

∫

Ω

(

tTDu −
1

2
tTSt

)

dΩ (21)

where

t =

{

tm
tf

}

, u =

{

um

uf

}

, D =

[

Dm 0

0 Df

]

(22)

where the vectors tm and tf are the membrane stress resultants, and the moment and

shear resultants, respectively; um and uf are the in- and out-plane kinematical param-

eters, defined as follows

tm =







Nx

Ny

Nxy







, tf =























Mx

My

Mxy

Vx

Vy























, um =

{

ux

uy

}

, uf =







uz

ϕx

ϕy







(23)

where N,M,V are the membrane, bending, and shear stress resultants, respectively;

u,ϕ are the midsurface strains and rotations, respectively. The corresponding nodal

displacements for nodes i = 1...4 are

uem =







uxi

uyi

ϕzi







12×1

, uef =







uzi

ϕxi

ϕyi







12×1

, i = 1...4 (24)

and the corresponding displacements at any point ζ on side k along the contour

ukm(ζ) =

{

uxk

uyk

}

2×1

, ukf =







uzk

ϕxk

ϕyk







3×1

, k = fixed, −1 ≤ ζ ≤ 1 (25)

The strain-displacement differential operators Dm and Df for first order shear defor-

mation (FSDT) kinematics are defined as

Dm =





∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x



 , Df =













0 0 −∂/∂x
0 ∂/∂y 0
0 ∂/∂x −∂/∂y

∂/∂x 0 1
∂/∂y −1 0













(26)

The 8×8 stiffness matrix E and compliance matrix S = E−1 can be written as

E =





Em Emf 0
ET

mf Ef 0
0 0 Es



 , S =





Sm Smf 0
ST
mf Sf 0
0 0 Ss



 (27)
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where Sm, Smf , Sf , Ss are called α, β, γ, h in [3, Eq. (6.20)]. Note that S = E−1 and

Ss = E−1
s , but Sm 6= E−1

m , and so on.

Since the stresses satisfy equilibrium

∫

Ω

tTDu dΩ =

∫

Γ

tTNTu dΓ =

∫

Γ

tTmNT
mum dΓ +

∫

Γ

tTf NT
f uf dΓ (28)

where the matrix

N =

[

Nm 0

0 Nf

]

(29)

contains the membrane Nm and bending Nf components of the outward unit normal

to the contour.

Both the displacements u and tractions t are discretized on terms of shape functions

t = B βe, u = U ue (30)

where B is given by (6)–(7) and U is implicity given by (13)–(16). Then, performing

the integration (21) we get

Φe = β
T
e Qeue −

1

2
βT

e Heβe (31)

where De, He, are the kinematics and compliance matrix of the element, respectively.

The compliance matrix can be written as follows

He =

∫

Ωe

BT S B dΩ =

[

Hm Hmb

sym Hb + Hs

]

(32)

where

Hm =

∫

Ωe

{

BT
mSmBm

}

dΩ, Hmb =

∫

Ωe

{

BT
mSmbBb

}

dΩ

Hb =

∫

Ωe

{

BT
b SbBb

}

dΩe, Hs =

∫

Ωe

{

BT
s SsBs

}

dΩe (33)

and Bm,Bb,Bs are given by (6)–(7).

Using (28), the kinematics matrix is evaluated through contour integration

Qe =

∫

Ωe

BT D U dΩe =

∫

Γe

BT NT U dΓe (34)

where the contour integral can be broken into four sides k = 1...4 as follows

Qe =

[

Qm 0

0 Qf

]

, Qm =
4

∑

k=1

Qmk, Qf =
4

∑

k=1

Qfk (35)

where Qmk and Qfk are both 9× 12 matrices, defined by the following equations
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βT
mQmkuem =

∫ 1

−1

tTmk(ζ) NT
mk umk(ζ) dζ

βT
f Qfkuef =

∫ 1

−1

tTfk(ζ) NT
fk ufk(ζ) dζ (36)

with the components of the unit normal to the element side are written as follows as

follows

Nmk =

[

nkx 0 nky

0 nky nkx

]

, Nfk =





0 0 0 nkx nky

nkx nky 0 0 0
−nky 0 −nkx 0 0



 (37)

or

Qm =
4

∑

k=1

∫ 1

−1

BT
mk NT

mk Umk dζ

Qf =
4

∑

k=1

∫ 1

−1

BT
fk NT

fk Ufk dζ (38)

where Bmk and Bfk correspond to Bm and Bf evaluated on the side k while Umk

and Ufk are defined as

Umk =
∂umk

∂uem

, Ufk =
∂ufk

∂uef

(39)

In particular, for side k = 1 (nodes i = 1 and j = 2), we have

Um1 =

[

1−ζ

2 −
Lk nkx ∆4y(ζ−ζ3)

8 Ωe
0

nkx(ζ
2
−1)

8Lk

0
1−ζ

2 +
Lk nky ∆4x(ζ−ζ3)

8 Ωe

nky(ζ
2
−1)

8Lk

1+ζ

2 −
Lk nkx ∆1y(ζ−ζ3)

8Ωe
0 −nkx(ζ

2
−1)

8Lk
0 0 0 0 0 0

0
1+ζ

2 +
Lk nky ∆1x(ζ−ζ3)

8Ωe
−

nky(ζ
2
−1)

8Lk
0 0 0 0 0 0

]

3×12

(40)

Uf1 =





1−ζ
2 −nkx −nky

1+ζ
2 nkx nky 0 0 0 0 0 0

0
1−ζ

2 0 0
1+ζ

2 0 0 0 0 0 0 0

0 0
1−ζ

2 0 0
1+ζ

2 0 0 0 0 0 0





3×12

(41)

For other sides the contributions can be obtain by an index permutation in Eqs. (40)-

(41).

3 Geometrically non-linear element

Using corotational algebra to describe the element rigid body motion, a linear finite

element can be easily made into a geometrically nonlinear one [4]. A corotational

frame {ē1, ē2, ē3} is next defined with respect to the fixed frame {e1, e2, e3}

ēk = Q(α)ek, k = 1..3 (42)
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where the local reference frame is a Cartesian frame {e1, e2, e3} defined so that the

average Jacobian of the iso–parametric transformation is symmetric. In (42), Q is a

rigid body rotation parametrized by the rotation vector α according to [5] (see Fig. 1

and [6]) with the origin translated by the vector c.

The displacement and the rotation in the corotational frame ū and R̄ can be written

ū = QT (X + d − c)− X , R̄ = QTR (43)

where u,R are the displacement and rotation associated to position X in the fixed

reference frame, respectively. The rotation vectors ψ̄,ψ represent the rotation tensors

R̄,R with

ψ̄ = log(R̄(ψ̄)) = log (QT (α)R(ψ)) (44)

Figure 1: Corotational frame [6].

A corotational frame is defined for each element using the element rotation vector

αe which is a function of the element dof ue in the fixed frame

αe = αe(ue) (45)

The local dof ūe in the corotational frame are related to ue by the geometrical

transformation

ūe = g(ue) (46)

where g collects the corotational transformations of displacements (43) and rotations

(44), rearranged in terms of the definition of local dof ūe of the element.

A linear finite element with energy (21) can be transformed into a geometrically

nonlinear element by introducing a corotational description, i.e., referring the element

dof in eq. (21) to the corotational frame as follows

Φe(βe, ue) = β
T
e De g(ue)−

1

2
βT

e He βe (47)
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The element dof can be expressed as

ue = {βe, ue}
T

(48)

that collects all the dof in a single vector. The later is related to the global configuration

vector uG through the standard assemblage procedure

ue = AeuG (49)

where the matrix Ae implicitly includes the connectivity constraints between elements.

For the Hellinger-Reissner formulation used here, the components of ue are the global

displacements/rotations of the element nodes plus stress parameters in each element.

The stress parameters can be eliminated by static condensation at the element level,

leading to a pseudo-compatible system [7].

For nonlinear analysis, the corotational frame is obtained by simply setting the

rotation vector equal to the average nodal rotations of element e in the fixed frame,

where i = 1...4 are the nodes of the element

αe =
1

4

4
∑

i=1

ϕi (50)

4 Results

To illustrate some of the capabilities of the proposed element, the box beam shown in

Figure 2 is analyzed (see also [8]) and the predictions compared with CADEC [9] and

Abaqus [10]. The side flanges and webs have a width a = 2.5 mm and the top flange

is 2a. Two thickness are considered t/a = 3/10, 1/2. The ply properties are E1 = 104
GPa; E2 = 10.3 GPa; G = 5.15 GPa; ν12 = 0.21. The laminate stacking sequence is

[0/90/0/90]. The column is loaded and simply supported at both ends while the side

flanges are free. The load is a uniform edge pressure applied at the column ends on

either (a) the skin only, or (b) on both skin and stiffener walls. The buckling loads are

shown in Table 1 and Figure 2. Additional results are presented at the conference.

5 Conclusions

Static condensation of the stress dof results in an mixed element with 24 displacement

dof that exhibits significantly less computational cost than 48-dof displacement-based

elements but with comparable accuracy for the same number of global nodes. Further-

more, the corotational approach significantly simplifies the non-linear computations

because the nonlinearity is limited to the corotational mapping.
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Lenght t/a CADEC MISS-4 S8R CADEC MISS-4 S8R

[mm] Skin Only Skin&Stiffener

Flange Mode

20 3/10 9516 10161 9624 16202 16212 15381

20 1/2 22970 24284 23528 35720 36620 35016

φy Mode φz Mode

200 3/10 264 256 260 1310 1314 1210

200 1/2 462 444 456 2168 2220 2102

Table 1: Buckling loads (in Newtons) for the box beam loaded axially. The mesh used

for the analysis is reported in Fig. 2.

Figure 2: Buckling mode for the box beam loaded axially with uniform edge-pressure

and simply supported at both ends on skin only, L=20 mm, a/t=3/10.
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