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Abstract
Koiter’s asymptotic approach is a powerful alternative to path-following techniques in the anal-
ysis of slender structures. Its reliability for the evaluation of post-critical behavior, including
strong nonlinear pre-critical and modal interaction, is well know. The most recent finite element
implementations of Koiter’s approach are based on corotational formulation, which allows to
automatically reuse linear finite elements into a nonlinear context once the geometrically non-
linear corotational kinematics are developed. Beam assemblages, folded plates structures are
extended here to laminated composite slender structures. By reusing the mixed finite element
MISS-4 into a corotational framework, an analysis of folded plate structures within an FSDT
theory is developed. The analysis of a box structure is presented to highlight the accuracy of the
Koiter analysis in the recovery of buckling and post-buckling behavior with low computational
cost.

1. INTRODUCTION

Koiter’s asymptotic analysis is a powerful tool for the analysis of geometrically nonlinear struc-
tures. It is an effective and accurate strategy for predicting the initial post-critical behavior in
both cases of limit or bifurcation points, as well as mode interaction [1]. Koiter’s approach is
based on a fourth-order expansion of the strain energy. The book [2] contains past and recent
research efforts. A careful tuning of both the continuum model and its finite element imple-
mentation as well as a coherent evaluation of the kinematic relationships are needed to obtain
accurate results. Moreover, a structural model that is geometrically exact to fourth-order is
needed. This is a very strict requirement, but it is important for the reliability which are very
sensitive to the correctness of the energy expression.

The corotational approach (CR) proposed by Garcea et al. [3] is a tool to obtain an objective
model starting from a linear model. In the same paper the general approach has been applied
successfully to the analysis of 3D beam assemblages.

Recently, Zagari et al. [4] have been proposed an application to folded plates and shell struc-
tures. The linear finite element MISS-4 [5] is used in a corotational framework. MISS-4 is
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a simple four node quadrilateral high performance finite element based on Hellinger-Reissner
variational formulation. The displacement interpolation is ruled by 24 DOFs (3 displacements
and 3 rotations for nodes) while the stress is self equilibrated and isostatic using 18-β stress
parameters. The drilling rotations are introduced á la Allman, and spurious energy modes are
avoided.

In the present paper the recent developments of Koiter analysis for the analysis of laminated
composite plates [6] are discussed. The employed plate model is the first-order shear deforma-
tion theory (FSDT) [7]. Using MISS-4 finite element within the corotational formulation the
first four order of variation of the strain energy, needed by Koiter analysis, have been evalu-
ated. The robustness and accuracy have been tested in the buckling and postbuckling analyses
of clamped box under shear forces.

2. LINEAR FLAT SHELL ELEMENT

We assume that the initial reference configuration of the element is flat and referred to a local
Cartesian frame {e1, e2 , e3}. We denote by {x, y} the position of the vector along the middle
surface Ω lying in the plane defined by the unit vectors {e1, e2}, by s the thickness along the e3

direction and by Γ the boundary of Ω. Using FSDT [7], the mixed Hellinger-Reissner strain
energy of the flat shell can be written as: The mixed strain energy for a flat shell can be written
as:

Φ[t, d] =

∫
Ω

{
tT Dd −

1
2

tT E−1 t
}

dΩ, t =

[
tm

t f

]
, d =

[
dm

d f

]
, D =

[
Dm ·

· D f

]
(1)

where vectors tm and t f collect, respectively, the membrane stress resultants and the moment
and shear resultants, and dm and d f collect, respectively, the in- out-plane kinematical parame-
ters

tm =

Nx

Ny

Nxy

 , t f =


Mx

My

Mxy

S x

S y

 , dm =

[
dx

dy

]
, d f =

dz

ϕx

ϕy

 (2)

The differential operators Dm and Db are defined as

Dm =

∂/∂x ·

· ∂/∂y
∂/∂y ∂/∂x

 , D f =


· · −∂/∂x
· ∂/∂y ·

· ∂/∂x −∂/∂y
∂/∂x · 1
∂/∂y −1 ·

 (3)

The matrix of elastic coefficients, E can be written as
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E =

[
Em Em f

ET
m f E f

]
. (4)

Denoting by Em and E f the membrane and the flexural behavior, respectively, and by Em f

the membrane/flexural coupling depending by lamina material properties and laminate stacking
sequence (LSS) (see [7] for details). When the stress resultants are defined so that the bulk
equilibrium equations are satisfied with zero load, the following identity holds:∫

Ω

tT Dd dΩ =

∫
Γ

tT NT d dΓ =

∫
Γ

tT
mNT

mdm dΓ +

∫
Γ

tT
f NT

f d f dΓ (5)

being N the matrix collecting the components of the unit outward normal to the contour Γ, that
can be split into membrane Nm and bending N f parts.

2.1. Stress and displacements interpolations

Assuming a mixed interpolation for the stress resultants and displacements

t = Bte , d = Ude (6)

where B is the matrix collecting the assumed stress modes, te is the vector of stress parameters,
U is the matrix of the displacement shape functions and de is the vector of the displacement and
rotation kinematical parameters. Substituting (6) into (1) and integrating on the element domain
Ωe lead to the evaluation of the element mixed energy

Φe[te, de] = tT
e Dede −

1
2

tT
e He te ,


De =

∫
Ωe

{
BT DU

}
dΩ

He =

∫
Ωe

{
BT E−1B

}
dΩ

(7)

with De and He being the compatibility and flexibility operators, respectively. Their evaluation
for MISS-4 finite element is reported in [5].

3. GEOMETRICALLY NONLINEAR FORMULATION

A linear shell finite element can be made geometrically nonlinear through the use of an appro-
priate corotational algebra that governs the rigid body motion, like the one introduced in [3]. An
appropriate corotational frame is defined for each element through the element rotation vector
αe which is a function of the element kinematical parameters de in the fixed frame:

αe = αe[de] (8)

The local kinematical parameters d̄e in the CR frame can be related to de by a geometrical
transformation:

d̄e = g[de] (9)

Based on the above relations, the linear finite element characterized by energy (7) can be trans-
formed into a geometrically nonlinear element simply by introducing a corotational description
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and assuming that the element kinematical parameters in eq. (7) are referred to the corotational
frame. This leads to:

Φe[te, de] = tT
e De g[de] −

1
2

tT
e He te (10)

To apply the asymptotic approach to the corotational version of element MISS-4, explicit ex-
pressions for the second-, third- and fourth–order energy variations with respect to a config-
uration which can be either the initial or the bifurcation one, have to be computed. Making
use of an appropriate configuration updating process, we can always refer to a configuration
characterized by de = 0.

The corotational approach is very convenient to express the strain energy variations, because the
only nonlinearity is limited to the geometrical relationship g[de], eq. (9). The Taylor expansion
of this relationship can be written as

g[de] = g1[de] +
1
2

g2[de, de] +
1
6

g3[de, de, de] +
1

24
g4[de, de, de, de] + · · · (11)

where gn are n–multilinear symmetric forms which express the nth Fréchet variations of func-
tion g[de]. Starting from Eq. 11 the high order energy variations needed for Koiter analysis can
be easily evaluated.

4. NUMERICAL RESULTS: CLAMPED BOX UNDER SHEAR FORCES

The buckling and post-buckling analysis of a clamped box under shear forces are presented and
a comparison with Riks path-following analysis using ABAQUS [8, 9] is made. The geometry,
boundary conditions, and load are shown in Fig. (1). The geometrical data are l = 1000 mm,
a = 100 mm, r = 250 mm and the thickness is t = 10 mm. The line load is q = 25 kN/mm. The
following laminate stacking sequence is considered: [15/ − 30/15/ − 30]s. The elastic modula
for each lamina are: E1 = 104.0 GPa, E2 = 10.3 GPa, G12 = 5.15 GPa and ν12 = 0.021.

Figure 1. Geometry, boundary conditions, and load for clamped box subjected to shear load.

The critical loads are listed in Table 1 and the buckling modes are shown in Fig. 3. Note that h2

convergence is achieved for critical values as shown in Fig. 2.

The equilibrium paths are reported in Figs. 5 and 4, while a deformed configuration is reported
in Fig. 4. A comparison with Riks analysis is graphed. The accuracy of Koiter approach is
clear, both in pre-critical and post-critical behavior, but with lower computational cost.
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mesh λ1 λ2 λ3 λ4

2 146.72 152.72 202.10 220.47
4 82.87 101.43 131.52 133.71
8 56.56 59.39 77.11 80.06
16 43.49 45.31 54.81 56.96
20 41.89 43.54 52.15 54.02
24 41.01 42.57 50.69 52.41
24 (S8R) 40.61 42.31 50.24 52.07

Table 1. Clamped box under shear forces. Convergence of buckling loads with mesh refinement. The values on
the first column refer to the numbers of the element along a. The first column indicates the number of elements
used for the mesh along the side. The mesh refining has been done by splitting.
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Figure 2. Clamped box under shear forces. Convergence of buckling loads with mesh refinement. The solid line
represents h2 (for reference).
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Figure 3. Clamped box under shear forces. Buckling modes corresponding to buckling loads λ1, λ2.
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Figure 4. Clamped box under shear forces. Deformed configuration along the equilibrium path at λ = 52.20
and equilibrium paths evaluated for both Koiter and Riks analyses. The graphed displacement dx refers to the
transversal displacement of point B (see Fig. 1).
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Figure 5. Clamped box under shear forces. Equilibrium path recovered using Koiter analysis. The graphed
displacements dx, dy and dz refer to the displacements of point A (see Fig. 1).
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5. CONCLUDING REMARKS

Koiter’s asymptotic analysis represents a valid, less computational expensive alternative to Riks
path-following analysis for the recovery the initial post-critical behavior of composite struc-
tures, even those displaying strong precritical behavior and buckling mode interaction. Its use
in the context of laminated composite folded plate (shell) structures has been discussed. The
accuracy of the proposed element has been checked and the convergence of the critical and
post-critical quantities show good performance.
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