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Abstract

A methodology for determination of the intralaminar fracture toughness is presented, based on
fitting discrete damage mechanics (DDM) model predictions to available experimental data. DDM
is constitutive model that, when incorporated into commercial finite element software via user
material subroutines, is able to predict intralaminar transverse and shear damage initiation and
evolution in terms of the fracture toughness of the composite. The applicability of the DDM model
is studied by comparison to available experimental data for Glass-Epoxy laminates. Sensitivity of
the DDM model to h- and p-refinement is studied. Also, the effect of in-situ correction of strength
is highlighted.
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1 Introduction

Prediction of damage initiation and accumulation in polymer matrix, laminated composites is of
great interest for the design, production, certification, and monitoring of an increasingly large
variety of structures. Matrix cracking due to transverse tensile and shear deformations is normally
the first mode of damage and, if left unmitigated often leads to other modes such as delamination,
fiber failure of adjacent laminas due to load redistribution, and reduction of the shear stiffness, which
in turn deteriorates the longitudinal compressive strength of the composite [1]. Furthermore, matrix
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cracking leads to increased permeability and exposes the fibers to deleterious environmental attack,
which in the case of Glass and polymeric fibers, may lead to unacceptable material degradation.

As any other fracture process, transverse matrix cracking is defined by failure onset and prop-
agation. The simplest way to address matrix cracking is by limiting the design allowable to the
material strength at failure onset. Many models follow this approach [2, 3]. Most of them address
transverse matrix cracking together with other failure mechanisms such as matrix compressive fail-
ure, fibre tensile rupture or fibre compression failure. These models can be included in a finite
element code using the ply discount method [4, § 7.3.1].

More sophisticated models are capable of predicting damage onset and propagation. In [5–7],
the response of each lamina is obtained from a meso-model that couples the behaviour of a single
layer and an interlaminar layer. The first layer uses a damage model capable of differentiating
between tensile and compression loads, thus accounting for transverse matrix crack effects. The
second layer uses a two dimensional damage model that only takes into account stresses that lead
to delamination failure. Parameter identification is described in [6,7] and validation with open-hole
tensile tests on quasi-isotropic laminates is given in [8].

Another approach to simulate the onset and propagation of transverse matrix cracking, as
well as other failure mechanisms, is serial-parallel mixing theory [9]. This formulation obtains the
composite response from the constitutive performance of its constituents, usually matrix and fibre,
each one of them simulated with its own constitutive law. With this theory it is possible to use
any given non-linear material model, such as damage or plasticity, to characterize the composite
components. The correct determination of failure onset and propagation depends on the capacity
and accuracy of the model used. Examples of of this formulation are shown in [10–12].

When looking into the models developed specifically to address the phenomenon of transverse
matrix cracking, most of them establish a relation between the available strain energy of the mate-
rial and the density of matrix cracks [13–23]. Following this approach, [17, 19] uses finite fracture
mechanics to obtain the energy release rate required to double the crack density, with the ap-
parition of a new crack between two existing cracks. This model was improved with the concept
of incremental and continuous variation of crack density [20], showing that the calculation of the
energy release rate required to crack propagation is more accurate if crack density is assumed
to grow continuously, instead of doubling at each increment. Further, the equivalent constrained
model (ECM) [21,22], defines a law that provides the evolution of stiffness as matrix crack density
increases. Again, the increment of matrix cracks depends on the strain energy release rate.

Some of the above mentioned formulations provide analytical expressions that can be used to
obtain the mechanical response for simple geometry and load configurations. However, it is often
necessary to include the constitutive model into Finite Element Analysis Software. Some models
have been included in commercial FEM software [24–26], others that are available as plugins for
existing FEA software [27, 28], or as user programmable features, including UMAT, UGENS [29]
or USERMAT [30].

In this manuscript, it is proposed to use Discrete Damage Mechanics (DDM) for the simulation
of transverse matrix cracking. Briefly, DDM [31] is a constitutive model that is objective [32], i.e.,
the predictions are not affected by the element size or type (linear, quadratic, etc.). Furthermore,
only two material parameters, the fracture toughness in modes I and II, are required to predict
both initiation and evolution of transverse and shear damage.

Since fracture toughness is used to predict damage initiation (transverse and shear strengths are
not used) DDM does not require in-situ correction of strength. No hardening/softening parameters
are required either, which avoids costly experimentation that would otherwise be required to de-
termine them. Also, as it is shown in this work, DDM parameters can be identified for Glass fiber
composites. This is not easily done with continuum damage mechanics (CDM) models because
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their state variables (damage variables), are not direclty measurable [33]. As a result, CDM’s ma-
terial parameters must be identified using a macroscopic effect, such as the loss of stiffness, which
in most cases is difficult to measure [34].

Finally, DDM has also the advantage that it is already available to be used in commercial
FEA environments such as Abaqus4 [26] and ANSYS/Mechanical5 [35], in the form of UMAT,
UGENS [29], and USERMAT [30]. It is also possible to obtain the composite response to uniaxial
tensile loads with the webpage application [36, Cadec/Chapters/Damage/DDM].

The objective of this manuscript is to propose a methodology to identify the fracture toughness
using available experimental data. Once the DDM model parameters are identified, validation is
presented by predicting other, independent results, and conclusions are drawn about the applica-
bility of the model.

Standards exist for measuring interlaminar (not intralaminar) fracture toughness in mode I
(ASTM D5528) and proposed methods exists for mode II [37, 38], but no standard test method
exist to measure intralaminar fracture toughness. Thus, a method to identify the DDM model
parameters is necessary.

2 Discrete Damage Mechanics

Given the crack density λ and the shell strain ε, κ, DDM updates the state variable, i.e., the crack
density, and calculates the shell stress resultants N,M , and tangent stiffness matrix AT , BT , DT ,
all of them functions of crack density. The crack density λ is an array containing the crack density
for all laminas at an integration point of the shell element. Since the strain is conjugate to the shell
stress resultant, DDM provides a constitutive model that can be implemented as a user material
subroutine (UMAT, VUMAT, USERMAT) [30, usermatps-901] for flat plane stress elements and
as a user general section (UGENS) for curved shell elements [29, ugens-std].

2.1 Description of the Model

In DDM, damage initiation and evolution are controlled by a single equation representing the
Griffith’s criterion for an intralaminar crack, i.e., the undamaging domain is defined by

g(ε, λ) = max

[
GI(ε, λ)

GIC
,
GII(ε, λ)

GIIC

]
− 1 ≤ 0 (1)

where GI , GII are the strain energy release rates (ERR) in modes I and II, calculated with (14)-(15),
and GIC , GIIC are the invariant material properties representing the energy necessary to create a
new crack. We shall see that for fixed strain, both are decreasing functions of λ and thus (1)
exhibits strain-hardening for increasing λ, resulting in stress-softening as a function of strain.

DDM calculates GI , GII solving the 3D equilibrium equations in the RVE (Fig. 1)

∇ · σ − f = 0 (2)

reduced to 2D by the following approximations. The u3 component of displacement is eliminated
by assuming a state of plane stress for symmetric laminates under membrane loads,

σ3 = 0 ;
∂u3
∂xi

= 0 with i = 1, 2 (3)

4Abaqus and Simulia are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the
United States and/or other countries.

5Ansys R© is a registered trademark of ANSYS Inc.
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Then, (2) are written in terms of the average of the displacements over the thickness of each
lamina, defined as

û
(k)
i =

∫ tk/2

−tk/2
ui(z)dz (4)

where tk is the thickness of lamina k. Next, the intralaminar shear stress is assumed to be linear in
each lamina k, from the interface between laminas k − 1 and k (denoted k − 1, k) to the interface
between laminas k and k + 1,

τ
(k)
j3 (x3) = τk−1,kj3 +

(
τk,k+1
j3 − τk−1,kj3

) x3 − xk−1,k3

tk
; j = 1, 2 (5)

where x3 is the coordinate along the thickness of the laminate, and xk−1,k3 is the coordinate of
the interface between laminas k − 1 and k. Therefore, the 3D equilibrium equations (2) reduce
to a system of 2N partial differential equations (PDE) in two dimensions, in terms of average
displacements, with two equations per lamina.

Periodically spaced cracks, which propagate suddenly in a unstable fashion through the thickness
of the lamina and along the fiber direction are assumed [39], [4, § 7.2.1]. Therefore, a representative
volume element (RVE) is chosen spanning the laminate thickness between two adjacent cracks
(Fig. 1). The crack density is inversely proportional to the length 2l of the RVE,

λ = 1/2l (6)

Thus, crack density is represented in the model by the length of the RVE. Since the RVE is
independent of the finite element discretization, and the constitutive model is formulated in terms
of displacements (not strains), the constitutive model is objective, without needing a characteristic
length. By plotting the reaction force vs. applied displacement on the boundary, the numerical
results presented in this work corroborate the objectivity of the model.

The PDE system is complemented by the following boundary conditions. The surface of the
cracks in lamina c, located at x = ±l, are free boundaries, and thus subject to zero stress

1/2

∫
−1/2

σ̂
(c)
j (x1, l) dx1 = 0 ; j = 2, 6 (7)

All laminas m = 1..N with m 6= c, that is, excluding the cracking lamina c, undergo the same
displacement at the boundaries (−l, l) when subjected to a membrane state of strain. Taking an
arbitrary lamina r 6= c as a reference, the other displacements are

û
(m)
j (x1,±l) = û

(r)
j (x1,±l) ; ∀m 6= k ; j = 1, 2 (8)

Finally, the stress resultant from the internal stress equilibrates the applied load. In the direction
parallel to the surface of the cracks (fiber direction x1) the load is supported by all the laminas in
the laminate,

1

2l

N∑
k=1

tk

l∫
−l

σ̂
(k)
1 (1/2, x2)dx2 = N1 (9)
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but, in the direction normal to the crack surface (x2 direction), only the intact laminas m 6= c carry
loads (normal and shear)

∑
m 6=k

tm

1/2∫
1/2

σ̂
(m)
j (x1, l) dx1 = Nj ; j = 2, 6 (10)

The solution of the PDE system results in finding the displacements in all laminas û
(k)
i , and by

differentiation, the strains in all laminas. Next, the compliance S of the laminate is calculated by
solving three load cases

aN/t =


1
0
0

 ; bN/t =


0
1
0

 ; cN/t =


0
0
1

 ; ∆ T = 0 (11)

where t is the thickness of the laminate. Since the three applied stress states are unit values, for each
case, a, b, c, the volume average of the strain represents one column in the laminate compliance
matrix

S =

 aεx
bεx

cεx
aεy

bεy
cεy

aγxy
bγxy

cγxy

 (12)

Next, the laminate inplane stiffness Q = A/t in the coordinate system of lamina k is

Q = S−1 (13)

The degraded CTE of the laminate {αx, αy, αxy}T are given by the values {εx, εy, γxy}T obtained
for the case with loading N = {0, 0, 0}T and ∆T = 1. Then, the ERR in fracture modes I and II
are calculated as follows [40,41, (9.36)-(9.37)]

GI = −VRV E
2∆A

(ε2 − α2∆T ) ∆Q2j (εj − αj∆T ) ; opening mode (14)

GII = −VRV E
2∆A

(ε6 − α6∆T ) ∆Q6j (εj − αj∆T ) ; shear mode (15)

Tearing mode III does not occur because out of plane displacements of the lips of the crack are
constrained by the adjacent laminas in the laminate. The crack density is treated as a continuous
function, as suggested in [20], rather than a discrete function. Thus, the crack density is found
using a return mapping algorithm (RMA) to satisfy g = 0 in (1), as follows

∆λk = −gk/
∂gk
∂λ

(16)

2.2 Stress Softening

The ERR that would be released by the laminate if a potential crack would appear, increases
with strain according to (14), as it is shown in Fig. 2, but the crack does not materialize until
the available ERR exceeds the critical value. At this point a crack appears and dissipation takes
place. The ERR continues to grow after the critical value, meaning that new cracks appear, but the
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ERR grows at a slower rate than in the undamaging domain because the stiffness of the material
decreases with damage.

The RMA (16) finds the value of crack density λ that takes the damage activation function to
g = 0 as per (1). The search is done at constant strain, inside the DDM constitutive model for a
given iteration of the structural analysis program (e.g., Abaqus, ANSYS, etc.).

An increase of crack density produces a drop of stiffness, thus a drop of ERR as per (14)-(15). As
a result, once the crack density that satisfies g = 0 is found, no more damage can take place unless
the strain grows, which only can be imposed by the structural analysis program in a subsequent
iteration. This means that (14)-(15) displays strain hardening. To illustrate this, consider (14) for
mode I. With reference to the dimensions of the RVE in Fig. 1, we have that VRV E = 2l × 1 × t.
For each new crack, the crack area grows by ∆A = tk × 1 and the crack density doubles, so that
∆λ = λ. Finally, considering (6), and for a case of uniaxial state of stress in a tensile test, we have

GI =

(
− t

tk

∆E

2∆λ

)
ε2 (17)

where E(λ) is the laminate modulus in the direction of the applied strain ε. At constant strain, a
decreasing parenthesis in (17) assures that once the RMA has converged to a value of λ, no more
damage can occur without an increase of strain. Variation of GI/ε

2 vs. crack density is shown in
Fig. 3. Unlike other damage models in the literature, the DDM constitutive model calculates the
strain hardening (stress softening). Therefore, it is not necessary to postulate a hardening/softening
law, and more importantly, it is not necessary to perform costly experiments to calibrate it. Instead,
the hardening/softening law is provided by the DDM formulation.

Modulus degradation of the cracking lamina is shown in Figs. 4–7. Once the degraded stiffness
of the laminate (13) is known, the degraded stiffness of the cracked lamina, i.e., lamina c, can be
computed as

Q(c) =
t

tc

[
Q−

n∑
m=1

(1− δmc)Q(m) tm
t

]
(18)

and from it, the the stress carried by the cracking lamina is calculated and shown in Figs. 8–
9. Stress softening occurs immediately after damage initiation, as shown in Figs. 8–9, but unlike
PDA [26, § 24.3], the remaining stress in the cracking lamina does not drop to zero. In fact, for
laminates 3, 4, 5, the stress in the cracking lamina grows after the initial reduction. This means that
the stiffness of the cracking lamina does not decrease as rapidly as the increasing strain applied to
it. Note that laminates 3–5 have compliant support layers at ±θ = 15, 30, 40◦. The more compliant
the supporting layer is, the higher the stress taken by the cracked lamina.

Since DDM is insensitive to element size (see Section 5), Fig. 8 could be plotted in terms of
a displacement δ obtained for example by multiplying the strain by a characteristic length. In
Abaqus PDA, a characteristic length lc is chosen as the square root of the area of each element
in the mesh, δ = lcε [26], but DDM does not require the use of a characteristic length to achieve
objectivity.

A striking difference is noted comparing Fig. 8 with [34, Fig. 1] because the softening law in
Abaqus PDA [26, § 24.3] (σ−δ plot), assumes a linear decrease of σ after crack initiation, eventually
dropping to zero stress. Such empirical softening law contradicts Figs. 8–9. Although Figs. 8–9 are
the result of a model prediction, the model is validated for these same laminates by comparing to
experimental data in the form of both crack density vs. strain (laminate 1) and modulus reduction
vs. strain (laminates 2–5). Since the model calculates the stress σ2 in the cracking lamina using the
predicted modulus reduction, and the latter is validated, one can safely conclude that the calculated
stress is correct.
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3 Strength Criterion

The dimensions of the specimens used in the experiments reported in the literature are 12 mm wide
with a free length of 110 mm. The material is Fiberite/HyE 9082Af with ply thickness tk = 0.144
mm [42] with a literature reported value F2t = 40 MPa [43]. All laminates were subjected to axial
deformation εx along the length of the specimen. None of the laminas in these laminates is subjected
to fiber modes or matrix compression. The 90◦ laminas in laminates 1–5 in Table 1 are subjected to
pure traction and no shear, so damage initiation is controlled by the parameter F2t when a strength
criterion is used and by GIC when a fracture criterion is used. The ±θ◦ laminas in laminates 6–7
in Table 1 are subjected to a combination of traction and shear, so damage initiation involves the
parameters F2t, F6 when a strength criterion is used, and GIC , GIIC when a fracture criterion is
used. Seven laminates are considered in Tables 1–2. The laminate thickness is calculated in terms
of the laminate stacking sequence (LSS, column 2 in Table 1) and the ply thickness. The laminate
modulus in the load direction Ex is calculated using an online laminate analysis software [36] and
unidirectional lamina properties summarized in [34, Table 2]. The strain ε at first ply failure (FPF)
is read from the figures in the source articles [42,44]. At this point, the experimental FPF load per
unit width is computed as

FPFexp = t Ex εFPF (19)

The transverse and shear strengths of the unidirectional lamina reported in the literature are not
reliable because large scatter in the experimental data. Furthermore, since they are not invariant
material properties, they have to be corrected for in-situ effect [4, § 7.2.1, (7.42)]. The correction
is implemented in [36] as

F is2t = 1.12

√
2 tt
te
F2t

F is6 =

√
2 tt
te
F6

te = min(tk, tt) (20)

where tk, tt are the thickness of the ply in question and the transition thickness of the material,
respectively. The later is found experimentally as the transition between thin and thick ply behavior
[45], which can be taken as tt = 0.6, 0.8 mm for Glass-Epoxy and Carbon-Epoxy, respectively.
Besides that, F2t, F6 are the transverse and shear strengths of the unidirectional lamina, and F is2t , F

is
6

are the in-situ values for the ply with thickness tk.
Coincidentally, the FPF calculated with in-situ correction (labeled “FPF in-situ” in Table 2)

coincides with the experimental value (labeled FPF exp) for laminate #1, but not for the rest.
Meanwhile, the FPF calculated without in-situ correction (labeled FPF CLT) is highly inaccurate
for all laminates. The % error between the CLT prediction and the experimental FPF ranges from
58% to 138%, while the prediction corrected by in-situ effect is within 32% with an average error
of only 16%. Along with [46] for Carbon-Epoxy, the results discussed in this section represent the
first comprehensive validation of equations (20).

Next, the calculated in-situ FPF and experimental values of FPF are used to correct the uni-
directional transverse strength F2t for each laminate, as reported in the last column in Table 2.
On average, F2t = 46.38 MPa, vs. 40.0 MPa reported in [43]. In comparison, the unidirectional
transverse strength has been previously identified with Abaqus as F2t = 48.5725 MPa for the same
material [34, Table 3]. In conclusion, while in-situ correction improves the prediction of damage
initiation, the prediction can be further improved by adjusting the value of unidirectional lamina
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strength (in this case from 40 to 46.38 MPa) to better match the experimental values of damage
initiation.

4 Fracture Mechanics Criterion

The fracture mechanics criterion is given in (1) with the ERRs calculated with (14)–(15). An inter-
acting criterion was used in [31, (27)] but a non interacting criterion (1) is used in this manuscript
because the addition of an interacting term does not improve the prediction of observed response
for the available experimental data.

Data available from the literature is used in this section either to determine the material prop-
erties or to compare predictions with experimental data. One experimental data set, i.e., for
[0/908/01/2]S was used to identify (i.e., determine) the values of the material parameter, namely
GIC . This laminate was used because it presents only mode I cracks. The rest of the data sets are
used to compare the predictions of the model with experimental data.

All the laminates considered for the study are symmetric and balanced. Therefore a quarter
of the specimen was used for the analysis using symmetry boundary conditions and applying a
uniform strain via imposed displacements on one end of the specimen. A longitudinal displacement
of 1.1 mm was applied to reach a strain of 2%. Abaqus S4R shell elements were used for most
of the study but the convergence study also considered quadratic S8R shell elements, as well as
ANSYS linear PLANE 181 and quadratic PLANE 281.

DDM is a constitutive model. In that sense, a finite element program such as Abaqus provides
the laminate strain {ε, κ} and DDM returns the laminate stress resultants {N,M} that equilibrate
the strain {ε, κ} after the correct degradation of material stiffness has been calculated by DDM.
The stiffness degradation is calculated as in (13) for a crack density calculated as in (16) in such a
way that (1) is satisfied. In addition, the constitutive model returns the secant and tangent stiffness
matrices of the laminate.

While using Abaqus, DDM was implemented as a user general section UGENS. A UGENS
subroutine contains all the code to provide Abaqus with the laminate response, including the
laminate stress resultants {Nx, Ny, Nxy,Mx,My,Mxy}, the secant laminate stiffness [ABD], and
the tangent laminate stiffness [AT , BT , DT ]. Abaqus performs all the functions of the structural
analysis except for the constitutive response, with the later provided by DDM. For each Gauss
point, and at each iteration of the structural analysis, Abaqus provides the laminate strain {ε, κ}
and DDM returns the material response. The UGENS is used with shell elements S4R and S8R.

While using ANSYS, the DDM model was implemented as a user material (USERMAT). A
USERMAT subroutine contains all the code to provide ANSYS with the stress {σx, σy, σxy}, the
secant stiffness matrix [C], and the tangent stiffness matrix [CT ] of an homogeneous material that
is equivalent in response to the laminate. The USERMAT is then used along with elements PLANE
181 or PLANE 281 to model the flat specimen in a state of plane stress and axial extension. Since
DDM models a laminate with all of its detail, homogenization is required to obtain the constitutive
response of the equivalent, homogeneous material, which is performed as follows. The components
of stress are calculated as σα = Nα/t, where α = x, y, xy and t =

∑N
1 tk is the laminate thickness;

N is the number of laminas in the laminate. The stress resultants Nα are calculated by DDM
to equilibrate the strain {εx, εy, γxy} supplied by ANSYS once the crack density has converged
inside the DDM code. The homogeneization of the secant and tangent constitutive matrices are
calculated as [C] = [A]/t and [CT ] = [AT ]/t, where [A] is the 3×3 extensional stiffness matrix of
the laminate [4, (6.16)], as a function of crack density λ, and t is the thickness of the laminate.
Note that in a USERMAT, the bending [D] and bending-extension [B] matrices are ignored. Thus,
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the USERMAT can be used only to model plates under membrane loads, while the UGENS can be
used to model the combined membrane-flexural behavior of curved shells.

The difference between USERMAT (or UMAT) and UGENS implementation highlights an ad-
vantage of DDM over local constitutive models. Most damage constitutive models in the literature
are local, in the sense that they model the constitutive behavior σ = σ(ε, λ), at a material point
inside a lamina (e.g., Simpson integration point inside a lamina), without direct coupling with the
damage taking place simultaneously in other laminas. In contrast, DMM takes into account all
laminas simultaneously in the RVE (see § 2.1 and Fig. 1). Local models can be implemented using
USERMAT (or UMAT) to be used at the lamina level, but in doing so, the local models update the
state variables (e.g., crack density) in a given lamina using the values of the state variables for the
remaining laminas from a prior iteration of the structural analysis program. On the other hand,
DDM needs to calculate the entire laminate at once, thus requiring a UGENS implementation (or
the homogenization scheme used for ANSYS USERMAT). Furthermore, the fact that local models
σ = σ(ε, λ) implicitly affect the volume around an integration point, causes the solution to be mesh
dependent, thus requiring additional steps to attain objectivity [32].

Using the USERMAT/UGENS implementation described above, the value of critical energy
release rate GIC was identified in such a way that the DDM model provides a best fit to the
experimental crack density λ vs. stress σx for laminate 1 in Tables 1–2. The experimental data
and the fitted DDM model results are shown in Fig. 10.

The error was calculated using the usual formula

Error =
1

n

√√√√ n∑
i=1

[χmodel(ξi)− χexperim(ξi)]
2

(21)

where χmodel, χexperim are the predicted and experimental values of the dependent variable, respec-
tively; ξi is the test progress indicator, be it stress or strain depending on how the experimental
data is reported in the literature, and n is the number of experimental data points available. The
dependent variables used in this study include crack density λ, laminate modulus Ex, and laminate
Poisson’s ratio νxy.

By adjusting the parameters GIC , the minimization algorithm converges to a global minimum.
A MATLAB script was executed to look for the minimum error (21), by repeatedly executing
Abaqus with parameters varying as per the Simplex method [47]. The converged values of GIC =
253.5 J/m2 was obtained for Fiberite/HyE 9082Af. The best fit can be seen in Fig. 10. The error,
i.e., the difference between the prediction and experimental data points, is very small and is due
only to the dispersion of the experimental results.

For laminates 1, 6, and 7 [44], the measured property is crack density λ and the independent
variable is the applied laminate strain εx. For laminates 2–5 [42], the independent variable is again
strain but the dependent variable is the normalized modulus and the normalized Poisson’s ratio.

Predicted crack density vs. applied strain for laminates 6 and 7 are shown in Figs. 11 and
12, respectively; both presenting good agreement between model and the experiments. In both
cases, mode I fracture was assumed to be dominant, which is corroborated by the quality of the
predictions.

Predicted laminate modulus Ex vs. applied strain for laminates 2–5, are shown in Figs. 4–7. In
all cases, both damage onset and evolution are predicted quite well.

Predicted Poisson’s ratio νxy vs. applied strain for laminates 2–5, are shown in Figs. 13–16. In
all cases, both damage onset and evolution are predicted quite well.
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5 Convergence

In this section we assess the sensitivity of the DDM model to h- and p-refinement, realized by mesh
refinement and by changing the element type, respectively. Reaction force vs. applied displacement
are reported in Fig. 17 using two discretizations, namely 1 and 100 elements of type S4R in Abaqus,
thus demonstrating h-refinement. Furthermore, the analysis is repeated using elements S8R in
Abaqus, thus achieving p-refinement.

Since a uniform state of strain is applied, h- and/or p-refinement is not necessary to converge on
a solution, unless the constitutive model were mesh dependent (see [34, Figs. 14–15]). Objectivity
of the DDM constitutive model is verified by showing that the results are not affected by element
size or type, namely linear S4R or quadratic S8R (Fig. 17). Abaqus linear S4R elements were used
while adjusting the fracture toughness GIC , but the predictions are not affected if the element is
changed to Abaqus quadratic S8R, or ANSYS linear PLANE182 or quadratic PLANE183 elements.

6 Conclusions

A practical methodology is proposed to determine the material parameters, namely the critical
ERR using laminate experimental data in the form of crack density vs. strain, then predicting
modulus reduction vs. strain. To identify the material parameters, i.e., the critical energy release
rate, crack density is preferred to modulus reduction because the reduction of laminate modulus
due to transverse matrix damage is typically small, and thus parameter identification is difficult
using modulus vs. strain data.

From the model response obtained, it is observed that DDM predictions are good for matrix
cracking of Glass-Epoxy laminas, not only those oriented at 90 degrees with respect to the load
direction, but also at ±70 and ±55 degrees. Also, the model predictions are good when the
supporting laminas change from very stiff (0 deg) to very compliant (±40 degrees).

When using a strength criterion, the need to correct the lamina intralaminar strength values by
in-situ effect is demonstrated, but in-situ effect is inherently present in Discrete Damage Mechanics,
thus not requiring extra steps in the model implementation. Also, it is shown that the cracking
laminas do not lose their stiffness completely, with stress softening not reaching zero stress even
for very large strains. Damage models other than DDM commonly employ empirical softening
equations, which often assume that the stiffness of the damaging lamina vanishes for large strains.
This is shown to be incorrect for the materials and laminates included in this study.
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Figures

Figure 1: Representative volume element between two adjacent cracks.
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Figure 2: Calculated Energy Release Rate (ERR, GI) for a crack opening in mode I.
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Figure 4: Comparison between predicted and experimental values of modulus vs. applied strain
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Figure 5: Comparison between predicted and experimental values of modulus vs. applied strain
for [±15/904]S .
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Figure 6: Comparison between predicted and experimental values of modulus vs. applied strain
for [±30/904]S .
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Figure 7: Comparison between predicted and experimental values of modulus vs. applied strain
for [±40/904]S .
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Figure 8: Stress vs. strain in the cracking lamina.
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Figure 9: Stress vs. crack density in the cracking lamina.
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Figure 10: Identification of GIC using experimental data for [0/908/01/2]S .
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Figure 11: Comparison between predicted and experimental values of crack density vs. applied
strain for [0± 704/01/2]S .
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Figure 12: Comparison between predicted and experimental values of crack density vs. applied
strain for [0± 554/01/2]S

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Strain [%]

N
or

m
al

iz
ed

 P
oi

ss
on

’s
 R

at
io

Figure 13: Comparison between predicted and experimental values of Poisson’s ratio vs. applied
strain for [02/904]S .
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Figure 14: Comparison between predicted and experimental values of Poisson’s ratio vs. applied
strain for [±15/904]S .
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Figure 15: Comparison between predicted and experimental values of Poisson’s ratio vs. applied
strain for [±30/904]S .
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Figure 16: Comparison between predicted and experimental values of Poisson’s ratio vs. applied
strain for [±40/904]S .
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Tables

Table 1: Laminate description.

t Ex ε FPF
Lam. Num. LSS [mm] [Mpa] [µε] Ref.

cracks in 90◦ laminas with 0◦ supporting
1 [0/908/01/2]S 2.74 17841 5000 [44, Fig. 1]
2 [02/904]S 1.73 23539 5900 [42, Fig. 7]

cracks in 90◦ laminas with ±θ◦ supporting
3 [±15/904]S 1.73 22087 5800 [42, Fig. 8]
4 [±30/904]S 1.73 18608 6200 [42, Fig. 9]
5 [±40/904]S 1.73 16179 6700 [42, Fig. 10]

cracks in ±θ◦ laminas
6 [0/± 704/01/2]S 2.74 17879 6100 [44, Fig. 2]
7 [0/± 554/01/2]S 2.74 18995 10500 [44, Fig. 3]

Table 2: In-situ strength calculations.

Lam. Num. FPF exp FPF CLT FPF in-situ % error % error F2T corrected
- [N/mm] [N/mm] [N/mm] w/in-situ w/o in-situ [MPa]
1 244 154 244 0 -58 40
2 240 129 204 -17 -86 47
3 221 122 193 -15 -82 46
4 199 104 164 -22 -93 49
5 187 90 143 -31 -108 52
6 298 171 316 6 -75 38
7 546 229 413 -32 -138 53

Average 16 91 46.38
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