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ABSTRACT 

Level III reliability analysis is proposed to deal with different statistical distributions for the 
various loads and resistances that affect the design of structural members and systems 
constructed of reinforced composite materials, textile soft goods, and other novel materials for 
which experimental data is scarce and onerous to obtain. The analysis is simplified in terms of 
basis values by treating independently each random variable in the design equation. Following 
this approach, the designer uses a single value (i.e. a basis-value) for each random variable in the 
design equation or equations while maintaining key characteristics of level III methodology. This 
is achieved by employing an appropriate distribution function for each random variable along 
with their first and second moments. A methodology to calculate basis-values other than A- and 
B-basis is presented in this work for the Normal, Log-Normal and Weibull distributions. A 
rationale for this approach and the need to expand the coverage to cases other than A- and B-
basis is provided also. 

1. INTRODUCTION 
The use of advanced composite and textile materials is growing at a steady pace. New 
applications and materials are being developed every day. In some fields where these materials 
are used, design codes for composite materials exist. For example in the aeronautical industry, 
the MIL Handbook 17 Volume 1 Chapter 8 [16] specifies the procedures for calculating 
statistically based material properties. In many other areas there are no statistical codes for 
design or even there are no codes at all. 

Fiber reinforced materials (e.g. composite materials, fabrics, etc.) present higher variability in 
their mechanical properties compared, for example, with homogeneous materials like steel or 
aluminum. The root cause of the higher variability can be traced back to the intrinsic variability 
of each constituent, surface phenomena between components, fabrication processes and even 
testing.  

1.1 Design Methodologies 
The most basic design method is to consider that both the actions (loads) and the resistance 
(material strength, section properties, etc.) are deterministic and a global safety factor is applied. 
This is known as Allowable Stress Design.  

A more refined approach is to consider the variability in the actions and/or resistance, 
independently. In this approach characteristic or basis values for the actions and resistances are 
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defined independently and the rest of the variables in the failure equation are considered 
deterministic. 

Lastly, one could consider that an arbitrary number of the variables involved in the failure 
equation are non-deterministic and the reliability is assessed taking into account the probabilistic 
distribution and parameters for each random variable. If two or more random variables are not 
independent, the covariances should be taken into account.  

1.2 Stochastic Models for Fiber Bundle Strength 
The tensile strength of materials reinforced with long fibers can be analyzed using the concept of 
a fiber bundle material. The basic assumption is that the system works in parallel and that when a 
fiber breaks; it is no longer able to bear any load. Therefore the load must be redistributed among 
the surviving fibers [8, §9.1.3]. In the case of composite materials or wire rope, upon breakage of 
a fiber the load sharing takes place among the nearest fibers (local load-sharing). For composite 
materials the binding effect is due to matrix while for the wire rope is due to friction [10]. 

For materials reinforced with long fibers, if the strength of each individual fiber is assumed to be 
independent and to follow a Weibull distribution, it can be proved that the strength of the bundle 
is very well approximated with a Weibull distribution as well [3,10,11]. The parameters of the 
latter distribution will be different than the ones for the distribution of single fibers. For example, 
the shape parameter will be higher for the bundle, so that the variability of the strength will be 
lower for the composite that the single fibers. 

The Weibull distribution for the single fibers is chosen because represents the response of a 
chain made of an ideal brittle material [8, §9.1.1] (weakest-link system). A further refined step 
would be to consider a bi-modal Weibull distribution, as is suggested in [1, §2.1], to include both 
intrinsic and extrinsic defects. 

The Weibull model for composites is widely accepted and there is a strong preference for it, even 
if other models seem to do a better job fitting the data [16, §8.3.4]. 

2. BASIS VALUES 
Resistance basis values are used in design to account for the variability of the material properties, 
while load basis values account for the variability of the loads. Basis values are one-sided 
tolerance intervals which contain a fixed proportion of the population f, also called coverage. In 
the case of resistances, only the lower tail of the distribution concerns. Because tolerance 
intervals are based on a sample x containing only n data points out of the entire population, the 
former assessment can be made only with a limited level of confidence q. As the number of 
samples n tends to ∞ the basis value approaches the characteristic value. 

There are two particular tolerance intervals that are widely used in the aerospace industry. These 
are the A- and B-basis tolerance intervals. The A-basis value of a random variable is such that 99 
% of the data will fall above the basis value with a 95 % of confidence. The B-basis is less 
restrictive, demanding that only 90 % of the data has to be higher than the basis value, again with 
95 % of confidence [16, §8.2.5.2]. 



 
 

The A-Basis is commonly used for catastrophic failure where there is no possible load 
redistribution. On the other hand, the B-Basis allowable is employed for structural members with 
redundant load paths where load redistribution is possible [5, §6.4]. 

In the aerospace industry, a serious failure is likely to be catastrophic so a higher reliability is 
expected but on the other hand, the mass of the structure is a major concern. For the sake of 
optimizing the mass while keeping the desired reliability, there are two sets of material 
allowables to be used depending on the nature of the consequences upon failure of the structural 
member in question.  

As the use of fiber reinforced materials keeps spreading to other industries and applications, the 
designer might find that the A-Basis is too harsh while the B-Basis too mild. Furthermore, 
having to design using two different sets of allowables can be really cumbersome and error-
prone. For some applications like wind turbine blades and marine structures it is common 
practice to use 95 % of coverage and 95 % of confidence in order to calculate the design values 
[12, 15, 17]. 

If experimental data is available, the mean value and standard deviation of the sample can be 
determined. Using the latter statistics and the sample size, the basis value can be calculated by 
the procedures described in this section. A goodness of fit test should be done to confirm that the 
chosen distribution adequately fits the data [16, §8.3.1]. 

2.1 Basis Values for the Normal Distribution 

The basis value 𝑥௣,௤ with coverage 𝑓 = 1 − 𝑝 and confidence q for a normal random variable x 
with mean value and variance, both estimated by the sample mean 𝑥̅ and sample standard 
deviation s, can be calculated as, 𝑥௣,௤ = 𝑥̅ − 𝑘௣,௤(𝑛) 𝑠 [1]

In order to calculate 𝑘௣,௤(𝑛), the non-central t-distribution with 𝜈 = 𝑛 − 1 degrees of freedom 
and non-centrality parameter 𝜆 = 𝛷ିଵ(𝑓)√𝑛 is used, where 𝛷ିଵ is the inverse cumulative 
distribution function (icdf) for the standard normal. The coefficient 𝑘௣,௤(𝑛) can be calculated as 
described in [2, 8, §3.3]. 

The different values of k can be tabulated for a certain coverage and confidence as a function of 
the sample size n. Then, the basis value is calculated for any given sample mean and sample 
variance using (1). 

Due to its widespread use in the aerospace industry, the values of k have been tabulated for the 
A- and B-basis [16, Tables 8.5.11 and 8.5.10]. For values of f=0.95 and q=0.95 it is possible to 
build Table 1 with the value of k as a function of n. 

 

 



 
 

Table 1. One-sided basis tolerance limit factors, k, for the normal distribution with 95 % 
coverage and 95 % confidence 

n k 
2 26.260 
3 7.656 
4 5.144 
5 4.203 
6 3.708 
7 3.340 
8 3.187 
9 3.031 
10 2.911 
15 2.566 
20 2.396 
30 2.220 
50 2.065 
75 1.976 
∞ 1.645 

 

In certain cases, where a particular material is made in large quantities following a very 
standardized process, the confidence on the standard deviation s is very large and therefore it can 
be assumed to be known. Under this assumption, (1) is simplified to 𝑘௣,௤(n)หఙ = 𝛷ିଵ(𝑓) + 𝛷ିଵ(𝑞)/√𝑛 [2]

where the notation (∙)|ఙ is used to emphasize that 𝜎 = 𝑠. 

In some codes, regulations or guidelines the statistical process to handle the variability of the 
material properties is simplified by using (2) instead of Table 1. The value of k will be different 
depending on which equation is used, especially for small sample sizes. For example, in [15], a 
minimum of 5 samples is required. For the Normal distribution, with n = 5 and assuming that the 
standard deviation is known, 𝑘଴.଴ହ,଴.ଽହหఙ(5) = 1.645 + ଵ.଺ସହ√ହ = 2.380 (using (2)), yet from Table 
1 for 𝑘௣,௤(5) = 4.203. Therefore the basis value calculated using (1) will be different, depending 
on which equation was used to calculate k. It could be said that this is a simplified model and a 
safety factor can be applied to cover this inaccuracy, but by doing this the reliability will depend 
on the number of samples. 

2.2 Basis Values for the Log-Normal Distribution 
The Log-Normal Distribution assigns zero probability for negative values. This property is 
useful when, for some physical reason, the values of a certain random variable are known to be 
strictly positive. For example, the strength of a material cannot be negative. 



 
 

The procedure to calculate basis values for a Log-Normal distributed variable is similar to the 
case of the Normal distribution. The difference is that the calculations must be done taking 
logarithms on the data. After the basis value is calculated on the transformed values, it must be 
transformed back to the original space applying the exponential function. So, the basis values is 𝑥௣,௤ = 𝑒𝑥𝑝ൣ𝑥̅௅ே − 𝑘௣,௤(𝑛) 𝑠௅ே൧ [3]

where 𝑥̅௅ே is the sample mean in log space,  𝑠௅ே is the sample variance in log space and 𝑘௣,௤(𝑛) 
is the same as in (1). 

2.3 Basis Values for the Two-Parameter Weibull Distribution 
The procedure to calculate a one-sided tolerance limit of a random variable w which is assumed 
to follow a two-parameter (k, 𝜆) Weibull distribution, is explained in [7, Chapter 4] and with 
more detail in [6]. The shape parameter is k and the scale parameter is 𝜆. The drawback of the 
method presented in [6, 7] is that the results cannot be tabulated for an arbitrary sample 
characterized by Maximum Likelihood Estimates (m.l.e.'s), 𝑘෠, 𝜆መ, for k and 𝜆, respectively. 

The determination of the m.l.e.'s is done solving [7, Eqn. (4.1.8)]. Since it cannot be solved 
analytically, a numerical technique must be used. A FORTRAN subroutine is given in [16] or the 
MATLAB® command mle can be used. 

The equivalent extreme value distribution with parameters u, b is used for the derivation instead 
of the Weibull distribution with parameters k, 𝜆. Therefore, all the observations 𝑥௜ must be 
converted to extreme value form, 𝑤௜ = 𝑙𝑛(𝑥௜) [4]

The following step is to calculate the m.l.e.'s, 𝑢ො, 𝑏෠ for the extreme value distribution. Then, the 
relationship between 𝑢ො, 𝑏෠  and the m.l.e.'s 𝑘෠, 𝜆መ for the Weibull distribution is given by 𝑘෠ = 𝑒𝑥𝑝(𝑢ො) 𝜆መ = 𝑏෠ିଵ 

[5]

Where (∙̂) indicates that the value is a m.l.e. and not the actual parameter. 

Next, the set a of ancillary statistics are calculated as 

𝑎௜ = 𝑤௜ − 𝑢ො𝑏෠  [6]

The following equation must be solved for the basis value in extreme value form 𝑡௣,௤ 𝑃𝑟 ቀ𝑍௣ ≤ 𝑡௣,௤ห𝒂ቁ = 1 − 𝑞 [7]



 
 

where the conditional distribution 𝑍௣ given a can be found in [7, Eqn. 4.1.18] and 𝑃𝑟(∙) is the 
probability. 

The basis value in extreme value form is calculated as, 𝑤௣,௤ = 𝑢ො − 𝑡௣,௤ 𝑏෠ [8]

Lastly, the basis value 𝑤௣,௤ calculated in the previous step is in extreme value form and it should 
be converted to the original Weibull distribution, 𝑥௣,௤ = 𝑒𝑥𝑝൫𝑤௣,௤൯ [9]

This procedure has been developed in MATLAB and it is included in [2]. 

2.4 Weibull Basis Value Calculation using Tables for V 
Although the procedure explained in the previous section is enough for calculating the basis 
values, for design purposes the whole procedure might seem too complex. Part of the labor can 
be done once, for defined values of p and q and tabulated for different number of samples (n). 

This has been done for the A and B basis in [16, Tables 8.5.8 and 8.5.9] for 𝑛 ≥ 10. As 
mentioned before, the aerospace industry can afford to test a large number of samples for each 
material (sometimes about 4000 coupons [9]), so it is reasonable that results from at least 10 
samples will be available. On the other hand, other applications where composite materials are 
used, such extended testing is not feasible. The values of Table 2 for 𝑛 < 10 should be used with 
caution. In [14] it is suggested that for very small samples, m.l.e.'s may not be very precise. 

Table 2. One-sided basis tolerance limit factors, V for the Weibull distribution with 95 % 
coverage and 95 % confidence 

n V 
2 98.081 
3 17.884 
4 16.748 
5 13.333 
6 11.558 
7 10.463 
8 9.715 
9 9.169 
10 8.751 
15 7.566 
20 6.995 
50 5.915 
75 5.636 

 

The V coefficient plays a similar role as k for the normal and log-normal distributions. The most 
important difference is that in the calculation of the basis values the mean value and standard 



 
 

deviation are not used. The calculation of the basis values is done using the m.l.e's for the 
Weibull distribution (shape parameter 𝑘෠ and scale parameter 𝜆መ) and the corresponding V 
coefficient in (10). 

𝑥௣,௤ = 𝜆መ[−𝑙𝑛(1 − 𝑝)]ଵ/௞෠ 𝑒𝑥𝑝 ൬−𝑉௣,௤,௡𝑘෠√𝑛 ൰ [10]

The procedure used to calculate V for any coverage, confidence and number of samples is 
described in detail in [2].  

3. EXAMPLES BASED ON EXPERIMENTAL RESULTS 
Examples employing the concepts described in the present work will be applied to the design of 
an inflatable structure. The purpose of this structure is to seal a cylindrical conduit in case of 
flood. The structure is composed of a cylindrical body with spherical caps. 

3.1 Short Term Strength 
The calculation of the basis value for the short term strength of a Vectran reinforced 1500d, 
Urethane coated fabric, un-cut, along the fill direction is summarized in Table 3. The 
experimental data is taken from [13]. The data is assumed to follow a Weibull distribution, based 
on the reasons given in section 1.2. Furthermore, the Anderson-Darling test was performed on 
the data and the observed significance level (OSL) was greater than 0.25. The MIL-Handbook-
17-1F [16] suggests that if OSL > 0.05, the Weibull distribution should be adopted. The basis 
value for a coverage of 95 % and a confidence of 95 % are calculated using equation (10) and the 
values of V from Table 2. 
 
Table 3. Data and calculation of short term strength basis value for Urethane/Vectran 1500d un-

cut samples in the fill direction with 95 % coverage and 95 % confidence. 
 Specimen Strength F [N/mm] 
 1 363.493 
 2 361.682 
 3 372.050 
 4 381.196 

Mean Mean(F) 369.605 
Scale Parameter (m.l.e.) λ෠ 373.5425 
Shape Parameter (m.l.e.) k෠ 49.2122 

Sample Size n 4 
Coverage f 0.95 

Confidence q 0.95 
From Table 2 V୮,୯,୬ 16.748 

Basis Value Eq. (10) x୮,୯ 296.6389 

3.2 Friction 
For the calculation of the allowable value for the friction coefficient it will be assumed that 
random variable follows a log-normal distribution. The log-normal distribution assigns zero 



 
 

probability for negative values. In this example, the friction coefficient cannot be negative. The 
coverage and confidence chosen are 95 %. 
 

Table 4. Data and calculation of friction coefficient basis value with 95 % coverage and 95 % 
confidence. 

 Specimen Friction Coefficient μ 
 1 0.658 
 2 0.678 
 3 0.725 
 4 0.719 
 5 0.715 
 6 0.737 
 7 0.727 
 8 0.708 
 9 0.719 
 10 0.709 

Mean(ln(μ)) xതLN −0.344 
Standard Dev(ln(μ)) sLN 0.035 

Sample Size n 10 
Coverage f 0.95 

Confidence q 0.95 
From Table 1 k୮,୯,୬ 2.911 

Basis Value Eq. (3) x୮,୯ 0.641 

3.3 Long Term Strength 
The data included in Table 5 from [13], shows a set of time to failure and load at failure data 
points for Vectran fabric with a 2x2 weave. The long term strength (28 days) was an important 
parameter for the design of the inflatable structure. To estimate the parameters of the strength 
distribution at 28 days, it was assumed that the data fits a Bivariate Normal Distribution. The 
procedure used is explained in the following steps, 

1. Calculate ln(t୧)for all the times to failure. The logarithm of the time to break does a better 
job fitting the available experimental data. 

2. Calculate the mean values and standard deviation for the natural logarithms of the times to 
failure 𝐭 and strengths R. 

3. Find the best fit for the linear correlation factor ρ for the data. 
4. Calculate the conditional distribution of the Bivariate Normal Distribution with parameters μ୲LN, σ୲LN, μR, σR and ρ, at 28 days using the conditional moments. 

Table 5. Long-term Strength and Time to Failure for Vectran 2x2 Fabric 
R[N/mm] t[min] R[N/mm] t[min] R[N/mm] t[min] R[N/mm] t[min] 

350.4 0.52 324.1 0.87 306.6 7.33 284.7 1280 
350.4 0.75 324.1 6.28 306.6 120.88 284.7 1278 
350.4 0.9 324.1 6.47 297.8 38.07 284.7 724 



 
 

350.4 0.63 315.4 4.42 297.8 140.98 284.7 169 
341.6 0.69 315.4 4.62 297.8 117.87 284.7 787 
341.6 2.22 315.4 4.16 297.8 81.58 280.3 632.38 
341.6 1.26 315.4 1.53 297.8 15.22 280.3 3132.47
341.6 1.07 315.4 0.61 297.8 90.52 280.3 854 
332.9 4.28 306.6 6.67 289.1 53.08 280.3 48 
332.9 1.15 306.6 8.17 289.1 91.5 280.3 748 
332.9 0.88 306.6 65.2 289.1 51.65 280.3 293 
332.9 5.18 306.6 104.67 289.1 284.97 280.3 1440 
324.1 6.42 306.6 32.95 289.1 127.27 
324.1 1.13 306.6 43.53 289.1 59.95 

 
Table 6. Calculation of long-term strength basis value for Vectran 2x2 fabric with 95 % coverage 

and 95 % confidence. 
Log Time to failure mean μ୲LN 3.1208 

Log Time to failure standard dev σ୲LN  2.5412 
Strength mean μR 308.4556 

Strength standard dev σR 22.4082 
Correlation ρ -0.9052 

Conditional strength mean @ 28 days μR @ ଶ଼ ୢୟ୷ୱ 248.7210 
Conditional strength std dev @ 28 days σR @ଶ଼ ୢୟ୷ୱ 9.5250 

Sample Size n 54 
Coverage f 0.95 

Confidence q 0.95 
From Table 1 k୮,୯,୬ 2.0463 

Basis Value Eq. (1) x୮,୯ 229.2300 
 

4. CONCLUSIONS 
The underlying physical reason supporting the use of a Weibull distribution for the strength in 
the fiber direction of a fabric or composite reinforced with long fibers was outlined in the 
introduction of this work. The procedure to compute statistically based material values (basis 
values) 𝑥௣,௤ is very simple. When the data follows a Weibull distribution, a procedure to 
compute maximum likelihood estimates is needed, but such a procedure is readily available both 
in commercial and free software packages. The procedures to calculate the coefficients 𝑘௣,௤,௡ and 𝑉௣,௤,௡ that simplify the calculation of basis values for Normal and Weibull distributed data, 
respectively, are somewhat complex, but the results have been tabulated in Tables 1 and 2 even 
for very small number of data points n. Log-normally distributed data is handled using the same 
table used for Normal data. The multivariate Normal distribution was used to calculate the 
statistically based strength, taking into account the loading duration. The tabulated values for 
0.95 coverage and 0.95 confidence, should be very useful in many applications when a unique 
basis value is desired and the traditional A- and B-basis prove to be too strict and too lax, 
respectively. 
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