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ABSTRACT 

Preliminary design of composite laminate structures (CLS) involves a set of calculations starting 
from micromechanics, macromechanics, and structural analysis such as beam theory.  The design 
variables for CLS include fiber and matrix properties, fiber volume fraction, stacking sequence, 
section geometry, and so on.  When one of these variables is changed during the design process, 
all the calculations to model the CLS have to be redone. This paper discusses the use of object 
oriented programming (OOP) and relational databases (RDB) to mimic the design process of 
CLS and its elements, including laminate, lamina, and fiber. This approach ensures consistency 
of data and property values calculated at different design stages by enforcing known relations 
between the different objects in the CLS.  The ultimate objective is to create a software 
application allowing the designer to optimize the composite without the burden of repeating 
calculations. The application, www.cadec-online.com, attains maximum user convenience and 
real time deployment of software updates. 

1. INTRODUCTION 

Composite materials design requires the optimization of several variables such as fiber volume 
fraction, thickness, stacking sequence, etc. When one of these variables is changed, the designer 
has to recalculate the entire properties dependant on it. Recalculations are extremely tedious and 
error prone. The question that arises is how to automate the design process. 
The use of a procedural programming language such as FORTRAN or C presents some 
inconveniences. For example, the use of global variables allows any function to change the state 
of the program, which makes it difficult to predict the effect of inevitable code updates. Second, 
plain text files are used to preserve data. But plain text files cannot enforce referential integrity. 
As an example to illustrate the lack of referential integrity, suppose there is a file named 
Laminate.txt that stores the laminate definition (basically the stacking sequence) and each line in 
the file contains lamina orientation, lamina thickness, and the path to the file where the lamina is 
defined, for example Lamina.txt. If the user deletes the file Lamina.txt, the file Laminate.txt is no 
longer valid because the path in the stacking sequence field points to a nonexistent file 
Lamina.txt. If referential integrity was enforced, deleting Lamina.txt would not be a problem. 
 
In the last fifty years or so, computer science engineers have created a myriad of techniques to 
cope with inconveniences similar to the ones described above. In other engineering fields that 
regularly produce code to solve problems (composite materials design is an example) these 
techniques are not always used in a regular basis. However, this situation is beginning to change. 
More engineering software is incorporating OOP concepts in it and consequently users will want 
to know these concepts. As a matter of fact, commercial engineering software, such as Matlab® 
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and Abaqus®, have already incorporated some OOP concepts. Other examples are shown in [1-
4]. 
 
Thus, the objective of this paper is to show the use of OOP and RDB to develop software used to 
perform calculations in engineering design. For the CLS design engineer, this work can be seen 
as an update to traditional numerical methods courses. In the experience of the authors, the time 
consumed in learning these software development techniques is by far compensated by the 
advantages that these techniques bring. It ultimately changes the approach to composite design. 

1.1 Audience 
This paper is aimed to non computer science engineers with background in procedural 
programming. 

1.2 Background 

1.2.1 Object oriented programming (OOP) 
It is not the objective here to review the history of OOP; more thorough reviews are available in 
the literature [5]. However, it is worth mentioning that the first formal object oriented language 
was SIMULA 67, a language developed at the Norwegian Computing Center with the objective 
of performing physical simulations. Some other languages included this new paradigm, most 
notable, C++. In the early ‘90s, object oriented programming was already widespread and the 
choice for graphical user interfaces (GUIs). 

Nonetheless, FORTRAN, a procedural language, dominated the scene in scientific applications, 
for almost fifty years. Even today it is still one of the programming languages used to teach 
numerical methods [6]. For other engineering applications it is common practice the use of 
MATLAB® which is a computer language that shares similarities with FORTRAN. Only 
recently MATLAB® has incorporated OOP concepts [7]. 

In a procedural programming language the program is written as of a set of instructions that the 
computer executes sequentially. In contrast, in OOP the programmer defines the classes, by 
defining their behavior and structure, and the interactions between classes. 

A class represents things from real life, such as class Fiber represents fibers, class Matrix 
represents matrices and class Lamina represents laminae in a laminate. Because there are many 
kinds of fibers in the real world such as Kevlar49®, T300 carbon, and E-Glass, to name a few, 
each fiber is defined uniquely by the values in the fields defined in each class. The structure in 
the class contains data fields corresponding to the properties. For example, the Young Modulus 
and the Poisson’s ratio define the class Fiber. The E-glass object, which uses the Fiber class, has 
a Young Modulus of 72 GPa and a Poisson’s ratio of 0.22.  

However, a class is not only a collection of properties, it also features behavior. The behavior of 
a class is defined by methods. For example, the class Lamina, which has the properties Fiber, 
Matrix and Fiber Volume Fraction, also has a method that calculates the reduced stiffness matrix 
[Q]. These methods are analogous to subroutines in procedural programming with the difference 
that the methods are built into the class. If there is a lamina called MyLamina with an E-glass 
fiber, epoxy matrix, and 0.4 for the fiber volume fraction, the method to calculate the matrix [Q] 



 
 

of MyLamina is built inside the object. The method is accessed using the name of the object and 
a dot followed by the method’s name, such as MyLamina.Q() and using the values stored in the 
properties of MyLamina. 

There are different types of lamina based on the fibers’ layout: Unidirectional, Continuous 
Strand Mat, Fabric, etc. The models to predict each of the lamina properties need to take into 
account the different layouts; therefore, there has to be a different class for each type of lamina. 
In spite of the different fibers’ layout, all types of lamina share behavior. For example, a fabric 
lamina behaves similarly to a unidirectional lamina in the sense that both laminas have a reduced 
stiffness matrix [Q] associated with them. In OOP, these similarities can be exploited using 
inheritance. 

Inheritance means that a class that is defined as a subtype of a parent class can inherit data fields 
(properties) and methods (behavior) from the parent class. The importance of inheritance is that 
promotes code reuse and helps when updating the code. 

Unidirectional lamina and Fabric lamina inherit from Lamina the method that calculates the 
reduced stiffness matrix, preventing the programmer to write this function twice, one for each 
type of lamina. Additionally, if the project is extended to include another kind of lamina (e.g. 
chopped fiber) the previous definitions remain unchanged. 

Polymorphism is tightly related to Inheritance. Any child class can be used in place of its parent 
class. In a laminate (essentially an ordered list of laminas) the program can loop through the 
laminae list to request the reduced stiffness matrix of each lamina regardless of its subtype. This 
is useful to predict the mechanical behavior of the whole laminate. 

Consequently, the preceding example features abstraction. Abstraction consists of hiding 
irrelevant details of the particular implementation inside the object (by one of its methods). In the 
laminate loop example, the details of the model used to calculate the elastic properties of each 
type of lamina are irrelevant to the computation of the reduced stiffness matrix.  All the required 
information that each child class requires to calculate the mechanical properties is encapsulated 
(built-in) into the class. This is known as encapsulation, which restricts one object from 
accessing another object’s internal structure. 

In brief, the core concepts of OOP (inheritance, polymorphism, encapsulation, and abstraction) 
can be exploited in CLS design. 

1.2.2 Relational Databases 
The need to store the information that defines the laminate system in a consistent fashion 
demands using databases.   

A database, which is nothing more than an organized collection of data for one or more 
purposes, usually in digital form, has to meet certain requirements in the software industry: 
Availability, Performance, Isolation between users, Recovery from failure and disaster, Backup 
and Restore and Data Independence all of which ensures data consistency. 



 
 

One concept that deserves special attention is data independence. It involves two different 
concepts: logical independence and physical independence. Logical independence means that 
adding more properties or relationships among entities does not affect the queries in the 
application program. To visualize this concept, referring back to the plain text files example, 
suppose now it is required to add to the laminate definition the degradation factor of each lamina. 
This is often useful to simulate damage evolution of a lamina in a laminate. Adding this new 
field in a plain-text file would cause errors in previously coded subroutines referring to the 
definition of the laminate because the file syntax changes would require changing all the 
subroutines that use the new laminate definition file syntax. Using databases solves this 
inconvenience since subroutines are independent of the information structure. 

Physical data independence means that the details of how the information is stored in the hard 
drive do not affect the application queries. Database programs exploit this advantage to optimize 
and speed-up the queries. As a matter of fact, database programs split large files and create files 
for the indexes, all of this without the user noticing. This feature allows scaling of applications 
improving performance. 

Over the years, several models have been proposed to achieve the aforementioned industry 
requirements. The most used approach for databases today is called relational model. The 
relational model, introduced by E. F. Codd in 1970, is a mathematical model defined in terms of 
predicate logic and set theory [8]. 

It is clear that to meet all these requirements a specialized piece of software is needed. This 
software is called a database management system (DBMS) and includes all the tools and services 
required to control the creation, maintenance, and use of databases. 

1.2.3 Web application 
A CLS design program can be embedded into a web application. The advantages of the web 
application are many. First, a web application, such as www.cadec-online.com, does not require 
installation by the end user. For example, in a composite design course the professor does not 
need to spend precious time dealing with the installation of engineering software in each 
computer. The professor only needs to tell the students the web address of the application. 
Second, centralized updating eliminates the inconvenience of periodic, time consuming updates. 
Also, a web application permits access to personal files from anywhere with internet access, 
previous work can be stored and resumed anytime, anywhere. A web application promotes peer 
collaboration because it acts as a centralized place where users can share and discuss 
information. Also, it is platform independent. Finally, a web application allows a user to access 
his documents from several devices without the need of synchronization, since the information is 
stored in the cloud. 

Currently, there are an increasing number of scientific web applications [9-13] and we expect 
this number to grow due to the aforementioned benefits. 
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The rotation matrix [T], used to rotate the reduced stiffness matrix is a function of the lamina 
orientation defined by an angle θ, one for each lamina.  The orientation of the lamina is defined 
as the angle that the laminate axis and the fiber direction make as depicted in Figure 1.  The 
calculation of the reduced stiffness matrix can be done using models that depend on the lamina 
layout.  For example, a general model for a thin transversely isotropic plane-stress lamina 
satisfies 
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where E1 is the Young modulus in the fiber direction, E2 is the transverse in-plane Young 
modulus in the lamina, ν12 is the Poisson’s ratio coupling the fiber and transverse directions, and 
G12 is the in-plane shear modulus.  The values of E1, E2, ν12 and G12 can be calculated using 
micromechanics models such as the rule of mixtures (ROM) and the inverse rule of mixtures 
(IROM) [14], or other models depending on the lamina description.  For example, for a 
unidirectional lamina (consisting of continuous fibers aligned in a single direction embedded in 
matrix), E1 can be calculated using the ROM 

( ) mfff EVEVE −+= 11  [5]

However, a continuous strand mat, which behaves as an isotropic material in the plane of the 
lamina (E1 = E2 = E) is calculated using 

21 8
5

8
3 EEE +=  

[6]

where E1 and E2 are the elastic modulus in the fiber direction and transverse to it respectively for 
a fictitious unidirectional lamina made up with the same fiber, matrix and fiber volume fraction 
of the continuous strand mat. 

In this section, the implementation of the LSS problem is presented using C# and Transact SQL 
for OOP and RDB languages, respectively. First, a description of the objects to formulate the 
problem in a programming scheme is presented followed by the description of the database tools 
used. 



 
 

2.1 Object oriented implementation 

2.1.1 Micromechanics 
The laminas of a laminate can be of different materials with different properties. When available, 
experimental values are preferred. Otherwise, a model has to be used. For each kind of lamina 
there is a corresponding model: continuous strand mat, unidirectional, chopped strand mat, 
fabrics, etc. All these laminas, however, have unique elastic properties, either experimental or 
calculated. Regardless of how these properties are obtained or calculated, only the values of 
these properties can be accessed by the laminate object. This is an example of encapsulation. The 
reduced stiffness matrix can be calculated using those values; this is an example of inheritance. 

Figure 2 shows the class diagram for this example. The modeling of a computer system can be 
documented using a standard called UML (Unified Modeling Language) which specifies several 
diagrams that helps the interaction between the team members (Architect, Designer, 
Programmer, Tester and so on.). [15]. 

Figure 1 does not follows exactly the UML standard but rather Microsoft implementation in 
Microsoft Visual Studio 2010®. In this diagram the classes that make up the system and the 
relations between them are shown. Each class is represented by a box, where the class name is on 
top and under it the name of the parent class or if it is an abstract class the keyword abstract. The 
properties are also shown under the class name along with the methods. 

An abstract class cannot be instantiated. A lamina is an abstract concept and therefore lacks a 
definition of its mechanical properties. Since the different fiber layouts define the properties, 
only the child classes can be instantiated. 

In a class diagram, an empty arrow that goes from the subclass to the parent class indicates 
inheritance. 

The simple arrow that goes from one class to the other denotes association. For example a 
micromechanics lamina “has” a matrix. If it is a double arrow instead, it is a collection 
association “A Laminate has many LaminaInStackingSequence” (Shown in Figure 3). 

A class diagram is just a graphic representation; all the classes and relationships are coded in 
files. 

In the following discussion E1 refers to the mechanical property of a lamina, while E1 refers to 
the implementation of said property in the computer language. This difference in notation is due 
to the restriction in variable and method names imposed by the compiler. 



 
 

 

Figure 2. Class Diagram where the relationships between the classes that model the 
micromechanics are shown. 

 
What follows is the implementation of the Young modulus and how each class plays a role. 

2.1.1.1 Lamina 
        public abstract double E1 
        { 
            get; 
        } 

Definition of E1 as public means that other objects can access this value because it is a property; 
abstract means that child classes have to implement this property, and only the get accessor is 
present because the property is read only. 



 
 

The keyword get; in conjunction with the abstract keyword can be thought of as a placeholder. It 
tells the compiler that a property called E1 has to be declared by the child classes and it is read-
only. 

2.1.1.2 Experimental 
        public override double E1 
        { 
            get 
            { 
                return _e1; 
            } 
        } 
The override keyword tells the compiler that this property is the implementation of an abstract 
property. E1 is the value provided by the user, stored in the private field _e1 which it is 
encapsulated in the Experimental class. It can only be modified through the methods that the 
Experimental class exposes. 
 

2.1.1.3 Fabric 
        public override double E1 
        { 
            get 
            { 
                return /* Result from some model */ 
            } 
        } 
The Young modulus for a Fabric composite can be calculated from the weave pattern, but this 
process can take considerable time, even using a queue system. 

2.1.1.4 Continuous Strand Mat 
        private double E 
        { 
            get 
            { 
                Unidirectional FL = new Unidirectional(Fiber, Matrix, Vf); 
 
                return (3/8)*FL.E1+(5/8)*FL.E2; 
            } 
        } 
 
        public override double E1 
        { 
            get 
            { 
                return E; 
            } 
        } 
The equation implemented to calculate E1 for a continuous strand mat lamina is Equation  6. 
The new keyword followed by the name of the class calls a special method called a constructor, 
which creates a new instance of a class, in this case FL. 
The private keyword hides the property E to the rest of the world. It is only visible to itself. 



 
 

To access an object’s property the dot is used, for example FL.E1 tells the compiler that the 
property E1 of the object FL is required. 

2.1.1.5 Unidirectional 
 
        public override double E1 
        { 
            get 
            { 
                return Vf * Fiber.E + (1 - Vf) * Matrix.E; 
            } 
        } 
 
There are several ways to calculate E1 for a unidirectional composite. In this example Equation 5 
is used. 
 

2.1.1.6 Reduced Stiffness Matrix 
Once all the properties are known, either because they are calculated with a model or provided 
by the user, the reduced stiffness matrix can be assembled, using the plane stress assumption 
(Equation 4). 
 
        public double[,] Q 
        { 
            get 
            { 
                double Δ = 1 - (v12 * v12) * E2 / E1; 
                return new double[,] { {       E1 / Δ, v12 * E2 / Δ,   0 },  
                                       { v12 * E2 / Δ,       E2 / Δ,   0 },  
                                       {            0,            0, G12 } 
                                     }; 
            } 
        } 
 
Note that the methods E1, E2, ν12 and G12 that are executed depend on the lamina type. These 
are methods, not global variables as in procedural programming. The details of their 
implementation are hidden (polymorphism and abstraction). 

2.1.2 Macromechanics 
The stacking sequence of a laminate is a many-to-many relationship. One laminate has many 
laminas, while a lamina can be used in several laminates. Each lamina in the laminate stacking 
sequence has its orientation and thickness. This relationship can be modeled with a link class. In 
this example, LaminaInStackingSequence, which stores the particulars of each association, that 
is, the orientation and thickness of a lamina in a particular laminate. 

The class ShellLoad encapsulates the quantities that define a load state for a laminate, namely the 
forces per unit length along the boundary of the laminate (N), the moments per unit length (M) 
and the shear forces per unit length (V). 



 
 

ShellStrain stores the quantities that define the strain state of a laminate; namely the mid-surface 
strain {ε0}, the laminate curvatures {κ} and the transverse shear strains {�}. 

 

Figure 3. Class diagram for the macromechanics model. 

LaminaInStackingSequence exposes a property QBar which returns the reduced stiffness matrix 
rotated in the particular orientation of the lamina. To accomplish this task, QBar calls the method 
QBar of the lamina with its orientation. 

        public double[] QBar 
        { 
            get 
            { 
                return Lamina.QBar(Orientation); 
            } 
        } 
 
 
Lamina exposes a method called QBar, this method is responsible for rotating the Q to any 
coordinate system, using the transformation matrices as in Equation 3. 
 
        public double[,] QBar(double θ) 
        { 
            double m = Math.Cos(θ); 
            double n = Math.Cos(θ); 
 
            double[,] invT = new double[,] {  
            { m * m,  n * n,     -2 * m * n },  
            { n * n,  m * m,      2 * m * n },  
            { m * n, -m * n,  m * m - n * n } 
            }; 
 
            return invT * Q * Math.Transpose(invT); 
        } 



 
 

To calculate the laminate A matrix, the transformed reduced stiffness matrix of each lamina in 
the laminate coordinate system is used, (see Equation 2) as follows: 
 
        public double[,] A 
        { 
            get 
            { 
                double[,] A = new Double[3, 3]; 
                foreach (LaminaInStackingSequence L in StackingSequence) 
                { 
                    A = L.QBar*L.Thickness; 
                } 
                return A; 
            } 
        } 
The matrices B, D, and H can be calculated using a similar approach. 
The tensile and shear forces per unit length along the boundary of the plate element can be 
calculated, along with the moments per unit length, in terms of the mid-surface strains and 
curvatures, using the stiffness equations (Equation 1) as follows:  
        public ShellLoad Load(ShellStrain S) 
        { 
            ShellLoad L = new ShellLoad(); 
 
            L.N = A * S.ε0 + B * S.κ; 
 
            L.M = B * S.ε0 + D * S.κ; 
 
            L.V = H * L.γ; 
 
            return L; 
        } 

2.2 Relational Database 
The preceding section dealt with the manipulation of objects in memory. These objects, as 
variables are erased as soon as the program terminates. The best way to maintain this information 
is to dump it in a Relational Database for later use. The term used in database jargon is CRUD, 
Create, Read, Update and Delete. All these operations are stored in the database as stored 
procedures. The language that is used in relational databases is called Standard Query Language 
(SQL). 

SQL is a declarative language, rather than a procedural language. SQL describes what the 
program should do, but not how. It is up to the relational database manager system (RDMS) to 
find the best way to accomplish the task. 

The following procedure illustrates the use of a store procedure to query the database for laminas 
that depend on a particular fiber. This method is useful when the user wants to delete a fiber. In 
this fashion, a list of dependent objects can be presented to the user followed by a request for an 
action from the user (as seen in Figure 4).  

CREATE PROCEDURE Fibers_Dependencies_Lamina 
( 

 @Id uniqueidentifier 



 
 

 ) 
AS 
SELECT Id, Name FROM Laminas WHERE Fiber = @Id 
 
The SELECT statement returns all the laminas from the Laminas table where the Fiber field 
corresponds to the Id given. An analogous procedure can be used to retrieve the laminates that 
depend on the fiber. 

 

Figure 4. Example prompt asking the user to confirm deletion of the E-Glass fiber document. 

3. CONCLUSIONS 

The design of composite materials is a complex task that requires automation due to the amount 
of computations involved. The present work outlines the benefit of developing such a tool using 
technologies that have been traditionally associated to computer science and therefore have not 
been extensively used in scientific applications. Object oriented programming allows code reuse 
and simplifies the analysis of a system. Relational databases allow the designer to focus on needs 
rather than implementation and offer a full set of tools that guarantees data independence and 
reliability. Implementing the system on the internet allows global access and eliminates the need 
for user installation of updates. 
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