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1 Abstract

Scattering of sol-gel structures is investigated computationally. Sol-gels are recreated through an
aggregation algorithm incorporating Brownian motion and chemical reactions. Using the fractal
character of sol-gels, the concept of recursion is introduced as a tool to perform multi scale com-
putation of the response of sol-gels through the different scales from the molecular level to the
macro scale. The concept is illustrated with the prediction of scattering intensity. The relationship
between scattering intensity and functionality is investigated, noting that the later is a function
of the Brownian motion and chemical reactivity. Computational simulation tools are developed
to predict scattering intensity as a function of density and reactivity, the former represented by
the number of particles, or clusters, in the simulation box. Then, the results are correlated to
an analytical model that reveals the critical wave number, or critical scale, at which percolation
occurs.
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2 Introduction

Advanced products such as dense films, Aerogels, super capacitors, and dense ceramics can be
fabricated with Sol-gel technology [1,4,8,12,22,28,31,32,34]. This technology uses colloidal aggre-
gation [3,5–7,9,11,13,14,24–26,30,33,35,36,38,39,42], which after the removal of the liquid phase
leaves a solid ceramic structure [21, 38]. Extracting the liquid phase of the colloid gently, e.g. by
supercritical drying, leaves a solid structure with unique physical properties [12,21,30,41,42].

The outstanding properties of gel-derived materials are the result of a) the physical properties
of the base material and b) the unique structure of the resulting material [9, 15]. To characterize
the structure of gel-derived materials, Small Angle Neutron Scattering (SANS) and Small Angle
X-Ray Scattering (SAXS) have been used extensively [10, 16–20, 38, 40, 41] revealing their fractal
structure along several length scales [38].

In many cases, physical properties of the gel-derived structures can be explained by their fractal
structure [9, 15]. However, fractal theory is not always applicable, in particular when it becomes
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(a) (w,N) = (0.1, 100) (b) (w,N) = (1.6, 100)

Figure 1: Cross-section of an aggregated structure inside the simulation box, at scale λ ∈ [1, λmax].

inadequate to associate a fractal range to the structure, or when within a proved fractal range the
response is not explained by classical fractal theory [40,41].

In this work, it is proposed that some responses of gel-derived materials depend on the con-
nectivity of the structure while other responses depend on the mass distribution of the structure.
In this manuscript, density and scattering intensity are shown to depend on the mass distribution.
For this, density and scattering intensity of computer generated structures that resemble gels and
Aerogels are evaluated. On the other hand, Mechanical response of gels and Aerogels and their
relationship to scattering are investigated in Part II [2].

3 Computer-generated Structures

The structures at scale λ ∈ [1, λmax] are generated by an aggregation algorithm explained in detail
in [6]. Here λmax stands for the maximum scale at the first generation of the multi scale algorithm,
a scale that is given by the size of the simulation box L = λmax(2a0), where 2a0 is the size of the
primary particles. First, particles are randomly positioned at the sites of a cubic lattice inside the
simulation box. Then, a particle is chosen randomly to move in the lattice, in order to reproduce the
Brownian motion that occurs in a forming colloid satisfying Einstein-Smoluchowsky theory [29,37].
For two colliding particles, the probability of forming a bond is determined by the reactivity ω
and their coordination numbers ncA and ncB. If the bond is formed, the clusters containing the
colliding particles bond into a single, larger cluster. Periodic Boundary Conditions (PBC) are used
to delimit the simulation box. The algorithm ends when all particles form a single cluster. At this
point we say that all particles have aggregated, which is not the same as saying that all particles
have bonded with their neighbors. For that one would have to age/sinter the structure. Typical
structures are depicted in Figure 1 for low and high reactivity w.

Reactivity is a measure of the increase or decrease of additional energy required to form a new
bond as a function of the number of bonds already formed. Using this concept, the probability of
reaction of two particles is calculated using the the Metropolis algorithm [6]. In this way, different
structures are formed by varying the reactivity. Longer branched structures are formed for lower
reactivities, and more compact structures are formed for higher reactivities. The particular case of
neutral Aerogels was found to correspond to a reactivity of w = 1.

The resulting structure has a functionality3 distribution which not always coincides with the
coordination number4 distribution. However, both distributions can be modified as follows. When

3The functionality counts how many particles are next to a particle.
4The coordination number counts how many particles are bonded to a particle.
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sintering and/or aging a sol, the coordination number distribution approaches the functionality
distribution, as bonds appear between the particles that are next to each other. Also, as the initial
density is lowered, the functionality distribution approaches the coordination number distribution
(since all particles that are neighbors tend to bond when the density is low). Thus, responses
such as stiffness, which are associated to the connectivity of the structure, are expected to be
related to the coordination number rather than to the mass distribution, which is measured by the
functionality. On the other hand, responses such as scattering intensity, which are associated to
mass distribution, are expected to be related to functionality.

In this paper, scattering intensity (as a measure of mass distribution) is investigated for sol-gels.
Mechanical properties (as a measure of the connectivity of the structure) and their relationship to
scattering, are investigated in Part II [2].

4 Correlation Length

The correlation length ξ is a measure of the size of the clusters that have aggregated during the
gelation process. The relation between correlation length and density of the cluster is developed
in this section for structures with constant fractal dimension. In a simulation box of size L,
the aggregation process initially consists of N0 primary particles of size 2a0 that aggregate. The
primary particles may be molecules like SiO2, or cluster of molecules with a known size and
density. The effective density is ρ0

ef = N0/L
3, where N0 is the number of particles in the simulation

box. Conservation of mass implies that the effective density is constant through the aggregation
process. However, during aggregation, gaps are created as the clusters bond without perfect match.
Therefore, the density of the forming clusters decreases due to the incorporation of vacancies, the
size of the clusters ξ increases, and the number of clusters NC decreases. Due to the decrease in
the number of clusters in the simulation box, the average distance between clusters d increases. In
this way, the density of the cluster can be calculated as

ρC =
NC

L3
=

1

d3
(1)

Note that the number of particles N0 can be calculated as

N0 = NC Nk/C (2)

where Nk/C is the number of particles per cluster. Furthermore, assuming that the aggregation
process leads to a fractal structure, Nk/C follows a power law as

Nk/C =

(
ξ

2a0

)D
(3)

where D is the fractal dimension of the of the clusters.
At the end of the aggregation process, when only one cluster is found inside the simulation box,

NC = 1. Therefore, (3) can be rewritten as

ξ

2a0
= N

1/D
0 (4)

From (1), it is concluded that the mean free path d becomes equal to the size of the simulation
box, i.e. d = L.

Note that if ξ < L, the structure will not percolate and the effective density N0/L
3 would be

lower than the density of the cluster N0/ξ
3.
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Since ξ is limited by d, the system percolates for L = ξ = d, thus defining the critical percolation
density

ρcrit =
LD−3

(2a0)D
(5)

In other words, if ξ is chosen to be at least d, the cluster spans the entire simulation box,
connecting opposite faces of the simulation box. Using a dimensionless system, we have 2a0 = 1,
L′ = L/(2a0), and ρ′ = (2a0)3ρ Then, ρ′crit = L′D−3.

5 Percolation Kinematics

In this section, the evolution of a cluster during the aggregation process is described in terms of
the number of particles per cluster Nk/C and the number of clusters NC in the simulation box.

The aggregation process is assumed to be isotropic. At time t, in average, there are N
(t)
k/C

particles per cluster and N
(t)
C clusters in a simulation box of volume L3. Let ∆t be the time it takes

for the clusters to collide and bond with a second cluster, thus doubling the number of particles in
each cluster while cutting in half the number of clusters in the simulation box. Then,

N t+∆t
k/C = 2N t

k/C (6)

N t+∆t
C =

N t
C

2
(7)

Using (3) in (6) and (1) in (7), the evolution of the correlation length ξ and the separation
between clusters d is given by

ξt+∆t = 21/Dξt (8)

dt+∆t = 21/3dt (9)

Noting that d0 = LN
1/3
0 and ξ0 = 2a0, the recurrence can be solved for a time t = n∆t as

ξn∆t = 2n/DNC (2a0) (10)

dn∆t = 2n/3LN
−1/3
0 (11)

Since ξ and d share the value n, the parameters are correlated by

ξ(t) = 2a0

(
d(t)

LN
−1/3
0

) 3
D

(12)

If ξ(t) = L at any time during the aggregation process, the structure percolates. This is the
proposed percolation criterion.

It can be shown that if the separation between the clusters d(t) is equal to L, when there is
only one cluster in the simulation box, the size of the clusters satisfy ξ(t) = L, and the structure
critically percolates.

When percolation starts at t = tper, ξ(tper) = L, and the distance between clusters is



J. Non-crystalline Solids, 358(4):721–727, 2012. 5

d(tper) =

(
N0

L3

)−1/3( L

2a0

)D
3

(13)

Note that d(t = tper) may be smaller, equal, or greater than L. Thus, the number of clusters
NC(t = tper) inside the simulation box can be calculated as

NC(t = tper) = N0

(
2a0

L

)D
(14)

If the percolation criterion is not satisfied (ξ(t) < L) with one cluster (NC = 1) aggregating all

the particles, then ξ/(2a0) = N
(1/D)
0 , and d = L. The isolated cluster does not percolates.

If the percolation criterion is satisfied (ξ = L) with one cluster (NC = 1), the aggregation
process ends as soon as the structure percolates (t = tper). The cluster aggregates with the fractal
dimension of the physical aggregate, unconstrained by the simulation box.

If the percolation criterion is satisfied and NC > 1, then there are multiple clusters still available
that can further aggregate. If allowed to further aggregate in a larger simulation box, the final
cluster would be larger than the simulation box (ξ > L). When constrained by the simulation box,
the cluster aggregates with a fractal dimension higher than that of the physical aggregate.

From this discussion, three regimes are identified:

1. When ξ < L, isolated clusters are suspended in the simulation box.

2. When ξ = L, the density is the critical percolation density, and the structure spans the
simulation box.

3. When ξ > L, the the structure spans the simulation box before all particles are aggregated.

6 Scattering Intensity

Scattering has been widely used to characterize the structure of aerogels and disordered systems [10,
16–20,38, 40, 41]. Researchers use scattering techniques to identify the size of the primary particle
2a0 and the size of the clusters formed, the later known as the correlation length ξ. Also, scattering
experiments support the fractal nature of aerogels by evidencing a power law between the scattered
intensity I(q) and the the modulus of the scattering wave vector q

I(q) ∝ q−Dq (15)

where Dq is the fractal dimension associated to the intensity.
The scattering intensity is obtained by multiplying the scattering function5 S(q) by the form

factor6 P (q) of the scattering centers and the number of particles as follows [10]

I(q) = NP (q)S(q) (16)

where N is the number of particles. The scattering function S(q) can be calculated as [10]

S(q) =
1

N

N∑
i

N∑
j

mimj
sin(qrij)

qrij
(17)

5The scattering function accounts the interference of the scattered beams caused by the mass distribution of the
scattering centers.

6The form factor accounts for the scattering of the beam by each of the scattering centers.
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where rij = |ri − rj | is the relative distance between the centers, ri and rj , for the particles
tagged as i and j, and mi, mj are the scattering amplitudes proportional to the mass of the
scattering centers i and j, respectively.

In (17), 1
N

∑
i corresponds to the average overN particles of the total intensity of the interference

between the scattered beams by particle i and all the other particles (summation over j).
The calculation of the scattering intensity of large structures can be done using their fractal

character. By fractal character it is understood that the structure (mass distribution) is similar at
different scales [23, 27]. Similarity implies that for each entity at a certain scale, there is another
entity identified in a similar way at a larger scale. Considering a structure at two scales, a small
scale λ ∈ [1, λmax] and at large scale λ′ ∈

[
λmax, λ

2
max

]
, we have

λ′ = λλmax (18)

where λmax = Lmax/Lmin, Lmin is the size of the primary particle at the smallest scale of the
aggregation process.

The smallest discernible particle is called primary particle. Its properties are those of the
precursor material, which in this study is SiO2. The primary particle is identified at the small
scale range at λ = 1. At any subsequent scale, the primary particle is the cluster generated at
the previous scale. This means that the primary particle size at the larger scale is of the size of
the cluster at the previous smaller scale. The primary particle at the subsequent scale is named
primary cluster and is defined at λ′ = λmax.

The scattering function (17) is valid for the range

π

2Lmax
< q <

π

2Lmim
(19)

where Lmax = λmaxLmin is the size of the simulation box, and Lmin is the primary cluster size
at each scale. Thus, (19) suggests that the calculation of the scattering intensity can be separated
into wave number ranges δi = [ π

2L
(i)
min

, π

2L
(i)
max

].

L
(1)
min = a0

L
(i)
max = λmaxL

(i)
min

L
(i)
min = L

(i−1)
max

(20)

where 2a0 is the size of the primary particle.

Equation (20) means that only the structure at the range of scales λ(i) = [
L
(i)
min
2a0

, L
(i)
max
2a0

] is re-
quired to calculate (17) instead of requiring all the detail for all scales. This results in significant
computational savings. Hence, (16) can be rewritten as

I(q) = NS(q)P (i)(q) (21)

where i = {i : q ∈ δi}. The form factor P (i)(q) corresponds to the form factor of the primary
cluster at the scale range (i). Then, it can be reconstructed by recursion starting from P (0) = P0(q)
corresponding to the form factor of the primary particles, using

P (i)(q) = P (i−1)(q)

(
π/(2L

(i)
max)

π/(2L
(i)
min)

)−D(n−1)
q

= P (i−1)(q)λ
D

(n−1)
q

max (22)

with D
(n−1)
q the fractal dimension calculated for δi
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w

N 0.1 0.2 0.4 0.8 1.0 1.2 1.6

100 No No No No No No No

200 No No No No No No No

400 Yes Yes Yes No Yes No No

800 Yes Yes Yes Yes Yes Yes Yes

1600 Yes Yes Yes Yes Yes Yes Yes

1728 Yes Yes Yes Yes Yes Yes Yes

Table 1: Percolation results and test conditions. N is the number of particles in the simulation
box, and w is the reactivity.

This study assumes P
(i)
0 (q) = 1. Only the scattering function S(q) is required to calculate the

scattering intensity for any value of q using (21) and (22).
Scattering intensities for the samples in Table 1 using (17) are shown in Figure 2. In the Figure,

D is the fractal dimension calculated from (24) after conditioning the signal with (25), 2a0 is the
cluster radius, and q is the dimensionless wave number. The scattering profile I(q) predicted by
the computational experiment (simulation) is shown with thick solid lines. An approximation using
the model described in Section 7 is displayed with thin lines. Among the thin lines, continuous
lines indicate percolated structures and discontinuous lines represent non-percolated structures.

7 Analytical Model

An analytical model for the scattering intensity is proposed in this section. The model consists on
dividing the scattering range into two intervals: 1) q < qcrit where the scattering of the structure
resembles the scattering of a continuum solid, and 2) q > qcrit where the scattering of the structure
resembles the scattering of isolated particles. Based on the three regimens identified in Section 5,
the critical percolation wave number qcrit is here defined as

qcrit =
π

2ξ
(23)

7.1 Continuum Regime

For a simulation box of volume L3, if the correlation length is larger than the size of the simulation
box, ξ > L, the aggregating clusters percolate, thus, for q < qcrit the structure looks homogeneous
with the fractal dimension of a solid. Since the effective density does not change as a function of
the wave number, the measured fractal dimension is Dq = 3. Hence, the scattering intensity follows
(15), i.e., I(q) ∝ q−3.

This case is dominant when the number of particles N is large and thus most of the sites are
occupied, as illustrated by thin, continuum lines in Figure 2.

7.2 Isolated Clusters Regime

For q > qcrit, the scattering intensity resembles that of isolated spheres [10, 16] of radius R = ξ/2.
An attenuation factor (q/q0)−(3−Dq) is proposed here to take into account the mass reduction due
to the fractal character of the clusters. Hence, the proposed scattering intensity model satisfies
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I(q) =

(
3

sin qR− qR cos qr

(qR)3

)2( q

q0

)−(Dq−3)

(24)

In Figure 2, this regime is illustrated by thin, discontinuous lines. This regime is dominant for
low number of particles. In this way, the fractal dimension of the clusters can be determined by
fitting (24) to the scattering intensity calculated by the computer simulation (thick, solid lines in
the Figure).

Polydispersity, due to the cluster radius variability is incorporated by averaging the scattering
intensity (24) for a log-normal distribution of radii, using a procedure similar to [16, 20]. This is
made possible by simulating 32 specimens for each of the 42 samples depicted in Figure 2.

7.3 Critical Percolation Regime

The isolated cluster regime transitions into the continuum regime at the critical percolation state
with qcrit in the range given by (19). At this state, the structure is a collection of clusters forming
a highly porous structure.

In Figure 2, the critical percolation is identintified when qcrit enters into the simulation wave
number range given by (19), i.e. 2R = L. Also, during this regime, D = Dq.

7.4 Scattering Results

Simulation of scattering intensity is reported in this section. The influence of the reactivity and
precursor density on the scattering intensity was investigated by modelling the scattering function
of structures recreated using the algorithm described in Section 3. The fractal dimension inside
the cluster and the radius of the cluster where measured by fitting the parameters of the analytical
model presented in Section 7.

Border effects are removed in the same way they are removed experimentally [10,16]. That is, the
measured logarithmic intensity is subtracted from the signal Scube(q) produced by an homogeneous
sample, which in this work is a simulation box with all sites occupied (fractal dimension equal to
3). In this way, the reported intensity corresponds to

I(q) = I0
S(q)

Scube(q)

(
q

q0

)−3

(25)

where I0 = 1 for q0 = qmin.
The scattering intensity I(q), fractal dimension Dq, and equivalent radius of the clusters Req

are calculated for the conditions in Table 1 and presented in Figure 2. The reported wave number
q is dimensionless calculated as q = 2π/λ. Note that since P (q) = 1, the scattering intensity and
the scattering function have the same values.

Thirty-two samples are used to average7 the scattering results for each of the 42 conditions
studied. Since the most accurate measurement of the fractal dimension occurs for low number of
particles, it is assumed that the fractal dimension for larger number of particles is the same, if
the reactivity is the same. A standard deviation of 50% of the average cluster radius was used
for polydispersity. In order to avoid a discontinuity between the sphere model and the continuous
model, a log-linear interpolation is used from the qcrit/2 to qcrit.

Note that the proposed analytical model for scattering intensity fits the behavior well in Figure 2.
That is, the thin lines representing the analytical model of Section 7 overlap large regions if not

7An average is calculated for the structures generated as the result of aleatory character of the algorithm yielding
a polydisperse population of clusters.
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all of the simulation results (thick lines). The regions that are not overlapped, are explained by
the transition interval of the analytical model from the isolated cluster regime to the continuum
regime. Note that there is an increase of the calculated fractal dimension and a reduction of the
sphere radius with the increase of reactivity.

The criterion for percolation presented in Section 5 it used to determine if the structures perco-
lated or not, which is then reported in Table 1. A tendency to percolate is observed as the reactivity
decreases and the number of particles increases.

8 Discussion

For larger values of q, the small structural features influence the scattering results, whereas for
smaller values of q, the larger features are responsible for the scattering intensity. Then, selecting
a particular interval of wave numbers allows us to characterize the type of features present at a
certain scale interval. However, the scale intervals and the wave number intervals are inversely
proportional.

The peaks in Figure 2 are the result of the scattering of the clusters as isolated spheres (or
scattering of the pores between the clusters). As the number of particles in the simulation box
increases, a continuum phase appears, thus reducing the effect of the pores. As revealed by the
analytical model, as the number of particles N increases, the continuum regime becomes dominant
compared to the isolated clusters regime. On the other hand, as the number of particles is reduced
below the critical percolation density, the isolated clusters regime becomes dominant.

An increase in the number of particles increases the size of the associated cluster since each
cluster is made of more particles. However, the fractal dimension of the clusters is not expected to
change considerably since the same chemical reactions and Brownian motion occur as long as the
clusters do not percolate. That is, for values of q > qcrit, all structures with the same reactivity
have the same fractal dimension regardless of the number of particles.

Structures that become continuum at a certain scale, remain continuum for larger scales. Sim-
ilarly, structures that do not percolate will remain disconnected at larger scales as well. Only
structures that critically percolate can change their regime at larger scales, thus remaining criti-
cally percolating, or not percolating, or becoming continuum. Thus, using the recursion in (21)
and (22), the scattering intensity can be found for any structure, percolated or not.

As the reactivity increases, more compact structures are observed, congruent with the definition
of reactivity and results in [6]. The fractal dimension and critical density8 n0 = N0/L

3 as a function
of the reactivity for critical percolation are presented in Figure 3. Since higher fractal dimensions
correspond to more compact structures, reduced radii are expected for the clusters yielding higher
critical densities. For the range of reactivities studied, there is a monotonic increase of fractal
dimension and critical density. However, achieving compact structures with fractal dimension of 3
should require infinite reactivity. Furthermore, for reactivities several orders of magnitude smaller,
almost linear structures are expected with fractal dimensions close but greater than one.

9 Conclusions

The mass distribution in the sol-gel determines alone the scattering intensity. Then, the fractal
character of the mass distribution causes the scattering intensity to have a fractal character as well.
Also, the recursion algorithms proposed in order to calculate the effective scattering response of

8The critical density is defined as the number of primary particles in the simulation box at the scale range
considered.
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Figure 3: Fractal dimension (continuous line) and critical percolation density (discontinuous line)
as a function of reactivity.

the structure at different scale ranges can be used as a consequence of as the mass distribution
having fractal character. Therefore, the scattering intensity evaluated at a certain wave number
can be understood as the effective form factor of the structure at the corresponding scale. In
addition, the effective from factor can be investigated by analyzing the structure in a limited scale
range, with a reduced number of particles as compared to solving an involved model spanning
a broad range of scales, which would be prohibitively expensive. The results in the behavior
of the functionality distribution reported by [6] were confirmed through scattering experiments
by comparing the fractal dimensions, and finding higher fractal dimensions, i.e. more compact
structures, for higher reactivities.
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