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In this article a study of the structural andmechanical properties of porous silica is presented. The procedure to
prepare the samples consists in expanding single crystals ofβ-cristobalite to reach the desired density followed
by a thermal treatment. The resulting porous structures have densities in the range from 0.23 to 2.2 g/cm3. The
structure of the samples is studied by obtaining the fractal dimension using two different methods, one based
on the pair distribution function and the other one based on the simulation of a scattering experiment. The
values of the fractal dimension were found to be in good agreement with previously published data from
experiments and comparable computer simulations. The mechanical properties, namely elastic modulus and
strength, are studied through the simulation of a tension test. The elastic modulus and the strength relate to
density by a power law characterized by exponents of 3.11±0.21 and 2.53±0.15 respectively. A comparison
of that data to previously published data is included. The results proved that the direct expansion, coupledwith
thermal processing of the sample, leads to systems suitable to investigate the structure and the mechanical
properties of silica aerogels.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Aerogels and xerogels are nanoporous materials with interesting
properties from both scientific and industrial points of view. They can
be produced using any material, provided that it can form multifunc-
tional monomers that cross-link forming a gel, and that such a gel can
undergo the process of venting the liquid out the solid face without
causing its collapse [1]. In the case of silica aerogels and xerogels, some
of the properties that characterize them are their very low density,
as low as 0.003 g/cm3 which is only three times greater than that
of air, surface area as large as 1000 m2/g, a refraction index only 5%
greater than that of air, the lowest thermal conductivity among all
solid materials, a speed of sound approximately three times smaller
than that of air, and a dielectric constant only 10% greater than that
of vacuum. Those properties make aerogels and xerogels attractive
materials for applications such as catalysts, fuel cells, high perfor-
mance windows, supercapacitors, heat barriers, particle traps, ultra-
sound probes, and ion exchange media [1–4].

Experimentally, aerogels and xerogels are made by sol–gel proces-
sing. The processing starts with the hydrolysis of a silica precursor,
typically tetramethyl ortho silane (TMOS, Si(OCH3)4) or tetraethyl ortho
silane (TEOS, Si(xOC2H5)4); however other precursors can be used, too.
For example, Steven Kistler, who is considered to have discovered this

type of materials [1], produced the first silica aerogel using sodium
silicate (Na2SiO3) dissolved in a solution of hydrochloridric acid (HCl)
and water [2]. The pH of the solution can be controlled by adding acidic
or basic additives; those will react with neither the silica precursor
nor the water but will affect the rate at which the hydrolysis proceeds
as well as the final structure of the porous solid [5–7].

After the hydrolysis, polycondensation of silica occurs and the
solution becomes a gel. A large change of the viscosity indicates the
gelation of the solution. At this point a nanoporous solid skeleton of
silica is formed inside the solution and fills almost all its volume. If
the gel is dried at room temperature and atmospheric pressure, large
shrinkage of the solid structure is caused alongwith large reduction of
the porosity. The shrinkage is mainly due to the stresses exerted
on the solid branches when the liquid evaporates. Materials obtained
this way are called xerogels and have porosities as high as 50%,
corresponding to a density of 1.1 g/cm3. To avoid excessive shrinkage,
the pressure and the temperature of the gel are increased until the
critical point of the liquid phase has been exceeded. Under those
conditions there is no liquid/vapor interface and no surface tension.
Therefore, no large stresses are exerted on the solid skeleton and the
shrinkage is highly reduced. Solids processed at supercritical condi-
tions reach porosities up to 99.8% and are called aerogels [2].

Although the internal structure of aerogels and xerogels is re-
sponsible for their outstanding properties, such as large surface area and
low thermal conductivity, it is also responsible for its relatively poor
mechanical response. The tensile strength and the elastic modulus of
aerogels and xerogels can be up to four orders of magnitude smaller

Journal of Non-Crystalline Solids 356 (2010) 1325–1331

⁎ Corresponding author.
E-mail address: jrivasmu@mix.wvu.edu (J.S. Rivas Murillo).

0022-3093/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jnoncrysol.2010.03.019

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

j ourna l homepage: www.e lsev ie r.com/ locate / jnoncryso l



Author's personal copy

than those of dense silica glass, as it is confirmed by three-point bending
and diametral compression tests done by Woignier et al. [7–9], and
studies made by Groß et al. [10] using the ultrasonic pulsed-echo meth-
od. It is important to study the mechanical properties of this type of
material, in particular aerogels, because their poor mechanical response
limits their usage. For instance, the production of crack-free monolithic
tiles becomes difficult due to the brittleness of the material [11] which
affects its application in glazing systems where cracks are associated
with light scattering [12,13]. Also the use of aerogels as reaction plat-
forms requires very delicate handling, and their weakness limits the
usefulness of the material in this context [14].

Studies of the structure and properties of aerogels and xerogels are
done via experiments and computer simulations. Experimentally, using
small angle neutron scattering (SANS) and nuclear magnetic resonance
(NMR), it has been observed that aerogels and xerogels are fractal
structures characterized by a fractal dimension varying from 3 for very
low porosity (almost dense glass) to 1.8 for very light specimens. The
fractal dimension is slightly affected by the pH of the solution prior to
gelation [7,15–17]. Vacher et al. [15] found through SANS that aerogel
samples with densities smaller than 0.43 g/cm3 prepared under acidic
and neutral conditions have a fractal dimension around 2.4±0.03. A
fractal dimension of 2.2 was found by Devreux et al. [16] for aerogels
with densities around 0.17 g/cm3 prepared under acidic conditions.
Confirmation of those results is provided by Woignier et al. [7,17], who
studied aerogels prepared under acidic, basic andneutral pHfinding that
under basic conditions aerogels have a fractal dimension close to 1.8±
0.1, while under acidic or neutral conditions the samples had a fractal
dimension around 2.2±0.1 and 2.4±0.1 respectively.

In computational research, Molecular Dynamics (MD) simulations
are used in Kieffer and Angell and Nakano et al. [18,19] to generate
surrogate (computer models) of silica aerogels. Kieffer and Angell [18]
propose to use MD to model silica aerogel and xerogel starting from a
sample of silica glass that is gradually expanded. The expansion causes
breaking of the Si–O bonds and leads to the formation of a fractal
structure characterized by a fractal dimension that changes linearly
with density. However the linearity is not sustained for samples with
densities higher than 1 g/cm3. Kieffer and Angell [18] use an inter-
action potential of the Born–Mayer form, which accounts for two-
body interactions, to model a system containing between 300 and
1500 particles.

Nakano et al. [19] use a potential including two-body and three-
body interaction components to model porous silica with densities
varying from 2.2 g/cm3 to 0.2 g/cm3 in a system composed of 41,472
particles. Similar to Kieffer and Angell [18], Nakano et al. [19] gradually
expand the system until the desired density is reached and investigate
the dependence of the fractal dimension, internal surface area, the
pore to volume ratio, pore size distribution, correlation length, and
mean particle size on the density of the sample.

Campbell et al. [20], using the same potential as Nakano et al. [19],
generate porous samples by placing spherical clusters of dense silica
glass in a large volume and sintering the systemat constantpressure and
temperature. With that approach they generate samples of densities
varying from 1.67 g/cm3 to 2.2 g/cm3, a range of density corresponding
to xerogels, and study the changes on the short-range and intermediate-
range order of the structure with density. They also study the effect of
densification on the elastic modulus of the samples, finding a power law
relation between modulus and density with an exponent of 3.5±0.2.

In the present study the potential used by Nakano et al. [19]
is adopted, however a different approach to prepare the samples is
proposed. The volume of a dense crystalline sample (β-cristobalite) is
expanded in one step to the desired density. Then the temperature
is increased to give the atoms enough energy to diffuse through the
system, and finally it is cooled down in a stepwise process. This pro-
cess resembles a diffusion limited aggregation [18]. Since the atoms
are initially set at distances larger than their equilibrium distances and
have high kinetic energy, they can diffuse to farther regions in the

simulation volume and could potentially form any kind of structure.
That is an advantage of this procedure over the gradual expansion,
where the atoms can only move short distances and are bounded to
remain in the same region. For this study sampleswith densities varying
from 0.23 g/cm3 to 2.2 g/cm3 (dense glass) are produced. The fractal
dimensions for those samples are calculated based on the decay of
the pair distribution functions (PDF) and simulated scattering experi-
ments. The results obtained in this study, geometrical and mechanical
properties of porous silica, are in the ranges found experimentally.

The interatomic potential chosen for this study was developed by
Vashishta et al. [21,22]. It is used because it accurately reproduces
the structural parameters for dense silica glass. Using the factor Rχ
introduced by Wright [23] to compare the experimental results of
neutron scattering with computer simulations this potential produces
an error of only 4.4%, which is the smallest among all the available
potentials for silica [20]. Vashishta's potential also excels in the rep-
resentation of the elasticity of silica glass. The elastic modulus of glass
calculated using this potential has been reported to be around 70 GPa
[20], which compares well to the experimental value of 71.9 GPa
reported by Muralidharan et al. [24].

The MD simulation procedure used to prepare the aerogel and
xerogel samples is introduced first. Next, methods for obtaining the
fractal dimension and the mechanical properties of the samples are
described. Then the characteristics of the samples, the fractal dimension,
elastic modulus, and strength are discussed in relation to density.

2. Aerogel and xerogel simulation

2.1. Interatomic potential

The interatomic potential is the key component of any MD sim-
ulation. It represents the most important interactions among atoms,
i.e. bonding interactions, interactions with non-bonding neighbors,
and the extension of those interactions. If the interatomic potential
does not accurately describe the interactomic interactions, the sim-
ulation results will not be representative of the actual material.

The interatomic potential used for this study is the one developed
by Vashishta et al. [21,22] for amorphous silica. It involves terms
representing the interaction between two atoms (two-body compo-
nent); which, disregarding if the atoms bond or not, accounts for the
potential energy due to the distance between them. The potential also
includes the potential energy due to the change of orientation and
bonding angle of triplets of atoms (three-body component). The two-
body and three-body components of the potential are given by
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Hij
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ηij

ij

+
ZiZj
rij
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In the previous equations rij is the distance between the atoms
i and j. The first term of Eq. (1) represents the steric repulsion due
to the atomic size. The parameters Hij and ηij are the strength and
exponent of steric repulsion. The second term corresponds to the
Coulomb interactions between the atoms and accounts for the electric
charge transfer, where Zi is the effective charge of the ith ion. The third
term includes the charge–dipole interactions. It takes into account the
electric polarizability of the atoms through the variable Pij, which is

given by Pij =
1
2

αiZ2
j + αjZ2

i

� �
; where αi is the electric polarizability

of the ith ion. The parameters r1s and r4s are cut-off values for the
interactions.

In Eq. (2), Bjik is the strength of the three-body interaction, θjik is
the angle between the vector position of the atoms, i.e. rij and rik. The
function f represents the effect of bond stretching and the compo-
nent containing (cosθjik) takes into account the bending of the bonds,
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and θ̃jik is a reference angle for the respective interaction. Although,
there are six possible three-body interactions in the system, this
potential only considers themost dominant ones, which are related to
(Si–O–Si) and (O–Si–O) angles. More information about the potential,
including the values of the parameters, is available in Refs. [21,22].

2.2. Sample preparation

The simulations done to generate and characterize the samples of
silica aerogel and xerogel considered for this study were performed
using an in-house fortran program, which has been used successfully
to investigate structural and mechanical properties of silicon nitrate
[25] and silicon carbide [26] systems. In this code the Velocity–Verlet
algorithm is used to solve the equations of motion of the particles,
using a time step of 0.5 fs. Langevin dynamics is implemented and
all the particles in the system are used to control its temperature
accordingly.

The procedure to generate the porous samples analyzed in this
study follows the steps listed below:

i. Placing the atoms at the crystalline sites of β-cristobalite with a
lattice constant corresponding to the desired density.

ii. Heating up of the system to 3000 K.
iii. Cooling down of the system allowing relaxation at several

temperatures.

β-cristoballite is selected as starting material because it has the
same density as silica glass (2.2 g/cm3). The atomic coordinates for
β-cristoballite are given by Wyckoff [27]. The goal of this process
is to create a uniform distribution of atoms across the volume. The
expanded samples are heated up to 3000 K and held at that tem-
perature for about 50 ps. Keeping the system at high temperature,
along with the cooling scheme, eliminates the effect of the initial
positions of the atoms.

The complete thermal treatment involves heating the sample under
controlled temperature conditions for about 30 ps, then the tempera-
ture control is removed and the samples are relaxed. For cooling the
samples the samestrategyof temperature control and relaxation is used.
During cooling, the systems are relaxed at 2500, 2000, 1500, 600, 300,
and 0 K to allow diffusion of the atoms. For the simulations presented
here periodic boundary conditions and a time step equal to 0.5 fs are
used. The selection of a small time step ensures that the atoms do not
fly off, which is important in this case because large free surfaces are
generated inside the samples.

The crystalline samples used have a size of about 713 Å3 containing
24,000 atoms. They are expanded to obtain eight different systems
with volumes of 813, 913, 1013, 1113, 1213, 1313, 1413, and 1513 Å3,
and having densities of about 1.48, 1.05, 0.77, 0.58, 0.45, 0.35, 0.28,
and 0.23 g/cm3 respectively.

2.3. Geometrical characterization

Once MD has been used to generate the samples, the fractal di-
mension can be obtained based on its relation to the pair distribution
function (PDF) of the samples. The PDF represents the probability
of finding a pair of atoms separated by a distance r in the structure,
relative to the probability expected for a randomly distributed struc-
ture having the same density [28]. The PDF is calculated as

gαβ r1; r2ð Þ = V2
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where V is the volume of the system, Nα and Nβ are the numbers of
particles of the entities of type α and β respectively, ρα and ρβ are the

corresponding densities of α and β subsystems, and the symbol 〈〉
means ensemble average. Therefore, several configurations of the
system should be used to compute the PDF. The term inside the 〈〉

symbol indicates that when finding the distribution of distances be-
tween the atoms of type α and β one must locate each atom of type
α and obtain the distance from it to each one of the atoms of type β.

An example of the PDF for one of the systems created in this study
is shown in Fig. 1. In the inset of Fig. 1 the decay of the PDF for large
values of the distance between the atoms is shown. That decay can
be used to estimate the fractal dimension, df, of porous systems [18]
by using the relation:

df = 3 +
dLog g rð Þð Þ
dLog rð Þ ð4Þ

Another way of obtaining the fractal dimension of a structure
is through a simulated scattering experiment [29,30]. To simulate a
scattering experiment one needs to calculate the scattering intensity,
I, corresponding to different wavelengths of radiation shined to the
sample, represented by their wave number, q. An expression to cal-
culate I, when the positions of all the particles in the system are know,
is given by [31,32]:

I qð Þ
I0

= ∑
ij

sin qrij
� �
qrij

ð5Þ

where I is the scattering intensity, I0 is a reference value of intensity, q
is the wave number and rij is the distance between two atoms i and j.

For fractal structures, the scattering intensity can be related to the
wave number by a power law, where the exponent is the negative of
the fractal dimension of the structure, i.e. I∝q−df [31,32]. An example
of the I(q) is plotted in the Fig. 2. For large wave numbers the scat-
tering intensity corresponds to the individual particles and remains
constant; while for small wave numbers, clusters of particles are
responsible for the scattering. The limiting value of wave number in
the scattering is determined by the size of the sample modeled.

2.4. Mechanical characterization of the samples

A tension test is simulated by stretching the sample along one
direction at a strain rate of 0.004 ps−1. The strain rate is larger than
the one used in laboratory tests; however it has been shown that
smaller values of strain rate do not change the results significatively
[33]. At higher strain rates, the speed of the atoms, and consequently
the temperature of the sample, tend to increase. Nevertheless, if the
stretching speed is not near the speed of sound in the material, the
temperature can be controlled by selection of a proper thermostat
[34]. In this study, Langevin dynamics [35] is used to control the speed

Fig. 1. Pair distribution function for a sample of density of 0.45 g/cm3.
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of all the atoms in the system. Langevin dynamics is based on the
following equation,

mi

::
→ri =

→
Fi−miγi

→̇ri +
→
Ri tð Þ ð6Þ

wheremi is the mass of the atom,
→
ri,
→̇ri and

::
→ri are the position, velocity

and acceleration of the particle, F
→
i is the force exerted on the particle

by all the other particles in the system, R
→

i is a stochastic force applied
to the particle, and γi is a damping coefficient. Previous studies on
modeling bulk silica where used to select the combination of strain
rate and the damping to use in the Langevin dynamics without
affecting the results of the simulation [33].

3. Simulation results

3.1. Sample preparation

During the initial stages of the preparation process, and due to the
high temperature of the system, the atoms have high kinetic energies,
which allow them to move in groups formed by a small number of
atoms. As the temperature of the system is reduced the number of
atoms per group increases; but the atoms are still able to move in the
system. Finally, when the temperature is low the atoms can only find

equilibrium positions around their current locations, meaning that the
structure has been locked. This preparation process is not intended to
simulate the gelation process itself, but to allow the formation of
samples resembling the structure of silica aerogels and xerogels, and
responding to stimuli in a similar fashion that they do. How well this
purpose is accomplished will be discussed in the Sections 2 and 3. At
this point is important to remark that the simulated samples have
branched structures formed by groups of atoms interconnected by
small bridges.

Two of the samples generated for this study (ρ=0.58 g/cm3 and
ρ=0.28 g/cm3) are shown in Fig. 3, where it can be observed that
clusters interconnected by small chains are formed. Pores varying in
size from a couple of atomic distances to several nanometers are thus
obtained. Those pores have irregular shapes and can interconnect
forming percolating paths inside the structure, which reflects the
expected structure of silica aerogels very well.

3.2. Geometrical characterization

The pair distribution function of the samples produced for this
study reflects that in the short-range order, features under 5 Å, the
computational samples show characteristics similar to those of silica
samples, namely a bonding distance (Si–O atoms) of 1.63 ±0.03 Å,
the nearest neighbors distances O to O atoms and Si to Si atoms are
2.65±0.03 Å and 3.08±0.03 Å, respectively. For experimental silica
samples those quantities are 1.61±0.05 Å for Si–O, 2.632±0.089 Å
for O–O, and 3.08±0.10 Å for Si–Si [21].

In the range between 9 and 25 Å, approximately, the simulated
samples exhibit a fractal behavior, which agrees with the fractal range
found in simulations done by Nakano et al. [19], 5 to 25 Å. In aerogel
samples studied by Vacher et al. tevacher88 the fractal range of
the samples was identified extending from features as small as 4 Å
to features larger than 200 Å, depending on the density of the sam-
ple. Courtens and Vacher [36] report that the fractal range of silica
aerogels extends from 10 Å to 1000 Å, approximately.

The fractal dimension as a function of the density is plotted in
Fig. 4. The values of fractal dimension from References [18,19], also
shown in Fig. 4, were obtained using the PDF. As expected, the fractal
dimension increases with the density toward a limiting value of 3,
corresponding to bulk silica. For larger densities the scattering exper-
iments lead to fractal dimensions slightly smaller than those obtained
using the decay of the PDF. For lighter samples the opposite occurs.

Fig. 2. Log–Log plot of the scattering intensity vs. wavenumber for a sample of density of
0.45 g/cm3.

Fig. 3. Two samples generated for this study. Left: density of 0.58 g/cm3, porosity of 74%. Right: density of 0.28 g/cm3, porosity of 87%.
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The fractal dimension of the samples with densities in the range
of aerogels is 2.33±0.23. The value compares well with the value
obtained by Courtens and Vacher [36], 2.40±0.03, and byWoignier et
al. citewoignier98, 2.2±0.1 and 2.4±0.1 for samples prepared under
acid and neutral pH respectively.

3.3. Mechanical characterization

Data for the elastic moduli for different densities is presented in
the Fig. 5 along with experimental data taken from Refs. [7] and [8].
The magnitude of the values obtained for the elastic modulus of the
samples compares well with experimental data. Additionally, a power
law can be used to describe the relation between it and density of
the samples. From the results presented here the exponent for that
relation is calculated as 3.11±0.21. Comparison of that value and pre-
viously published data is summarized in Table 1. Although the ex-
ponent determined here differs from the one determined by Campbell
et al. [20], it is important to notice that the range of densities modeled
here is broader and the exponent lies in the range of the values found
experimentally, from 2.97 to 3.8. The range of densities modeled in this
research covers almost the same range that is covered byWoignier et al.
[7] for partially densified samples (last row in Table 1). In that range our
exponent, 3.11±0.21, compares well to the one determined experi-
mentally, 3.2±0.2.

The relation between strength and density is plotted in the Fig. 6. It
can be seen that a power law relation between strength and density
exists. The exponent for that relation has been calculated as 2.53±
0.15, a value that compares well with previously published values
summarized in Table 2. There is a difference between the magnitude
of the strength from experiments and simulations. The value of the

strength for dense glass obtained in this study was 4.4 GPa, which is
four times smaller than the experimental value of 18 GPa reported
in [24].

4. Discussion

The preparation process of the computational samples leads to
the formation of fractal structures resembling that of aerogels and
xerogels. The short-range order features, i.e. interatomic distances,
correspond to those of silica. The fractal features, although limited by
the size of the samples, appear in the range expected for this type of
materials (10–1000 Å). The value of the fractal dimension of the
aerogels samples, 2.3±0.23 compares well with experimental data
obtained from samples processed under acid and neutral pH values.
The fractal dimension tends to 3 (upper limit) as the density of the
material tends to the bulk material. When the sample becomes
lighter, near the percolation threshold, the lower limit for the fractal
dimension is also satisfied.

Although the procedure used to generate the porous samples for
this study does not correspond to the events happening during the
experimental gelation of a solution, it produces samples having geo-
metrical features that are similar to those of real aerogeland xerogel
materials. For instance, they have the same type of relation between
the fractal dimension and the density. This means that the direct
expansion procedure coupled with the thermal treatment of the sys-
tem increases the diffusivity of the atoms allowing them to reorganize
and form fractal structures.

The structural analysis of the samples produced for this study
is complemented by the mechanical characterization. The mechanical
properties of the samples relate to density following a power law,
which is typical of self-affine structures. Good agreement between
the elasticity of the simulated samples and the experimental values
from references is shown in Fig. 5. The elastic modulus for dense glass

Fig. 4. Fractal dimension of silica aerogels samples with different densities.

Fig. 5. Elastic modulus vs. density for silica aerogels. Campbell [20], Woignier [7,8].

Table 1
Exponent for the power law relation between elastic modulus and density of porous
silica.

Reference Exponent Density [g/cm3] Observations

This study 3.11±0.21 0.23–2.2 Computer simulation
Campbell et al. [20] 3.5±0.2 1.67–2.2 Computer simulation
Groß et al. [10] 3.49±0.07 0.14–2.7 Exp.
Groß et al. [10] 2.97±0.05 0.08–1.2 Exp. sintered aerogels
Woignier et al. [8] 3.8±0.2 0.1–0.4

(approx. values)
Exp. pH neutral

Woignier et al. [7] 3.7±0.2 0.055–0.5
(approx. values)

Exp. pH neutral, acidic
and basic

Woignier et al. [7] 3.2±0.2 0.42–2.2
(approx. values)

Exp. partially densified
samples

Fig. 6. Strength vs. density for silica aerogels. Woignier [7,9].
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(density 2.2 g/cm3) was determined as 63 GPa, which deviates only
12% from the experimental value of 71.9 GPa reported by Muralid-
haran et al. [24]. Reference [24] summarizes the elastic modulus and
the strength that can be obtained using four traditional potentials
to model dense SiO2 systems, namely Soules potential (S-potential),
Born–Meyer–Huggins potential (BMH), Feuston–Garofalini potential
(FG) and van Beest–Kramer-van Santeen potential (BKS). The min-
imum deviation between the simulated value and the experimental
one is 39% obtained using BKS-potential.

Similarly, the predicted relation between the strength and the
density of the samples (Fig. 6) correlates very well with the slope of
the experimental data. The main difference is that the magnitude
of the strength predicted from the simulations is smaller than the
experimental values. The difference is explained based on the values
of strength and elastic modulus predicted using other potentials for
silica. According to Muralidharan et al. [24] the use of BMH-potential
leads to values of strength between 30 and 65 GPa and elastic mod-
ulus of 220 GPa, the S-potential leads to values of 24–35 GPa for the
strength and 220 GPa for the elastic modulus, for the BKS-potential
the strength is obtained between 12 and 22 GPa and an the elastic
modulus is 100 GPa, and the FG-potential leads to a strength between
12 and 21 GPa and an elastic modulus of 125 GPa. Those results show
that the interatomic potentials are adjusted to reproduced some of
the properties of the material; but may not reproduce all of them. The
selection of Vashishta's potential for this study is based on its ability to
accurately reproduce the structural properties and the elastic mod-
ulus of silica. The work presented here shows that, although with
limitations, this potential and themethod used to prepare the samples
can be used to predict how the strength relates to the density for
aerogel and xerogel samples.

5. Conclusions

Direct expansion of crystalline samples of β-cristobalite to reach
densities between 2.2 g/cm3 and 0.23 g/cm3, along with thermal
processing, leads to fractal structures which allow to investigate the
properties of silica aerogels and xerogels. The geometrical features
of the modeled samples are characterized by the fractal dimension,
determined from the pair distribution function of the samples as well
as from simulated scattering experiments and are found to be in good
agreement with computational and experimental data. The fractal
region for the samples extends from about 9 to 25 Å, which is inside
the fractal range expected for aerogels, 10 to 1000 Å. The size of the
samples used for this study do not allow reproducing the macroscopic
features of real aerogels, such as pore size distribution and specific
surface area; but the results shown here are promising. Work is being
done toward using the direct expansion procedure to simulate larger
samples and to compare their macroscopic features to those of real
aerogels.

Furthermore, the mechanical properties, namely the elastic modu-
lus and strength, of the porous samples are found to scale with density
following a power law, which is expected for fractal structures. The
exponent of those power law relations are 3.11±0.21 and 2.53±0.15
for elasticity and strength respectively. Those values are in the range
determined experimentally. The exponent for the elastic modulus
deviates only 3% of the experimental value determined by Woignier

et. al. [7] for partially densified aerogels in a similar range of densities
than the samples modeled here. For the same samples, the exponent
determined here for the relation between strength and density devi-
ates only 10% from the one determined by them.
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