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ABSTRACT 

A constitutive model to predict stiffness reduction due to transverse matrix cracking is derived 

for laminae with arbitrary orientation, subject to in-plane stress, embedded in laminates with 

symmetric but otherwise arbitrary laminate stacking sequence.  The moduli of the damaged 

laminate are a function of the crack densities in the damaging laminae, which are analyzed one 

by one.  The evolution of crack density in each lamina is derived in terms of the calculated strain 

energy release rate and predicted as function of the applied load using a fracture mechanics 

approach.  Unlike plasticity-inspired formulations, the proposed model does not postulate 

damage evolution functions and thus there is no need for additional experimental data to adjust 

material parameters. All that it is needed are the elastic moduli and critical energy release rates 

for the laminae.  The reduction of lamina stiffness is an integral part of the model, allowing for 

stress redistribution among laminae. Comparisons with experimental data and some results from 

the literature are presented.  
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1. INTRODUCTION 

If a laminate is well designed, fiber failure modes, either tensile or compressive, should control 

the ultimate load of the laminate [1].  However, matrix cracks are often the first degradation 

event and they trigger other damage modes such as delamination, fiber-matrix debonding, and 
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fiber breakage that lead to fracture.  Furthermore, matrix cracks drastically increase the 

permeability of the material, thus allowing access to liquid and gas contaminants that may 

degrade the fibers and the fiber-matrix interface. Also, matrix cracks facilitate leakage of liquid 

and gas that would otherwise be contained in tanks, pressure vessels, and other similar structures.  

In addition, matrix cracks lead to stiffness reduction and stress redistribution to adjacent laminae, 

which are needed for computation of fiber-dominated failure modes and laminate strength.  

Therefore, prediction of matrix cracking initiation and evolution remains relevant for the analysis 

of laminated composites.    

 

Popular methods such as ply discount ignore the gradual redistribution of stress among laminae, 

which may lead to numerical instability of the solution algorithm.  While degradation factors [1] 

smooth out the sudden stiffness changes brought about by ply discount, they introduce an 

undesirable empirical parameter, the degradation factor, which changes with laminate stacking 

sequence (LSS) and material properties, and introduce an artificial residual stiffness for the 

cracking laminae, equal in magnitude to the degradation factor times the undamaged stiffness of 

the lamina. 

 

Usually, unidirectional loading of cross-ply laminates produces matrix cracking of the 90 

lamina when the load is applied in 0-direction [5,6,27,41,44,45], but this not the only case.  

Varna et al. [2] found in experiments for balanced [0/4/01/2]s laminates that matrix cracks 

appear for angles as low as =40.  Yokozeki et al. [3,4] observed matrix cracking for ply angles 

as low as 30 for unbalanced [0//90]s laminates.  In addition, matrix cracking has been shown 

to promote further matrix cracks in adjacent plies [5,6].  

 

Popular stress analysis methods for laminated composites are based on strength criteria, which 

need experimental lamina strength values, such as transverse strength F2T and shear strength F6.  

But these are not true material properties because their values change as a function of the 

thickness of the lamina and the laminate stacking sequence (both orientation and thickness) of 

the remaining laminae in a laminate.  In-situ values have been proposed to ameliorate this 

deficiency [7,8], but even if in-situ values bring strength criteria closer to experimentally 
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observed stress/strain at crack initiation, strength criteria do not provide information about crack 

evolution.  Indeed, they need to be supplemented by empirical damage evolution (kinetic) 

equations written in terms of additional material parameters to be determined by additional 

experimentation, and thus additional cost [9—18].  Energy criteria are preferable to strength 

criteria because they are based on invariant material properties [19,20]. 

 

Continuum Damage Mechanics (CDM) can be used for prediction of stiffness reduction in the 

presence of several damage modes [9—18].  In CDM, damage is represented by internal state 

variables, and evolution equations for these variables are postulated in terms of additional 

material parameters. A disadvantage of CDM is the difficulty in obtaining these material 

parameters from experimental data.  This issue have been partially solved by combining CDM 

with other techniques such as micromechanics [21-24], fracture mechanics [25], and in-situ 

damage effective functions [26].   

 

Another approach is the analytical solution of the stress and strains in a representative volume 

cell [27,28], an approach that is particularly interesting because the material properties of the 

damaged laminate depend exclusively on the crack density and no additional parameters or 

functions are needed.  Furthermore, stress transfer methods have been proposed [29—37] but the 

solutions given are limited to particular cases.  In [27] the Laminate Stacking Sequence (LSS) is 

restricted to [0/90n]s and in [47] to [ / 90]S , but in both cases only the 90-lamina can damage.  

In [28] the LSS is restricted to [n/m]s with cracks on both directions.  In [35] the LSS is 

restricted to [0/45]S.  Although symmetric laminates were analyzed in [19,20], the methodology 

proposed herein proves to be simpler and less computationally demanding.  In [38] a solution is 

presented for two sets of arbitrarily oriented cracking laminae with angles 1 and 2 and crack 

densities 1 and 2, embedded in a laminate with arbitrary LSS, by using oblique coordinates as 

in [28].  However, the solution for two damaging laminae is very difficult to generalize to 

multiple damaging laminae.   Furthermore, oblique coordinates introduce numerical instabilities 

for certain material systems when the angle between the two damaging laminae approaches zero 

or .  These problems are eliminated with the formulation proposed herein.  
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Several criteria have been proposed to predict matrix cracking evolution as a function of the 

applied load [10,19,20,39–42].  In this study, damage due to matrix cracks of a laminate with 

symmetric, but otherwise general LSS is predicted by a combination of an analytical solution for 

the damage activation function g and a return mapping algorithm (RMA) to restore equilibrium 

upon damage.  The shear lag analysis is inspired by the work in [28] but developed for a single 

lamina using a coordinate system aligned with the crack direction and computing damage 

evolution to one lamina at a time.  Furthermore, the proposed formulation takes into account the 

stiffness of the remaining laminae by a laminate homogenization method similar to that of 

[19,20].  However, the proposed formulation differs in a number of ways including the method 

of computation of damage variables D2(k) and D6(k) from the crack densities k in each 

lamina.  Finally, a modified RMA allows the algorithm to reconcile the damage in all laminae 

yielding corrected values for the damage activation function g(k) in each lamina.  Using 

concepts of CDM, the failure criteria of [40] is recast here as a damage activation function.  By 

using the calculated laminate stiffness reduction, the proposed damage activation function 

automatically and accurately represents the hardening behavior of the cracking lamina embedded 

in a laminate with correct representation of the constraining effect of adjacent laminae.  Unlike 

plasticity-inspired damage evolution models, the present formulation does not use any additional 

parameters; all that is needed are the moduli and critical ERR values of the laminae.  

 

 

2. ANALYTICAL SOLUTION FOR A CRACKING LAMINA 

Consider a symmetric laminate with otherwise arbitrary LSS.  We are interested in detecting 

crack initiation, predicting crack evolution and stiffness reduction.  A damage activation function 

can accomplish detection of crack initiation and prediction of crack evolution simultaneously if 

properly set up in terms of the reducing stiffness of the laminate. Therefore, the proposed 

analytical solution has two distinct parts: calculation of the damage variables D2() and D6() 

that represent transverse and shear stiffness reduction as a function of crack density , and 

calculation of the damage activation function ( ) 0g   delimiting the damage and no-damage 

domains. 
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2.1. Stiffness Reduction 

An analytical solution is derived in this section to calculate the reduction in transverse and shear 

stiffness of the laminate as a function of the crack density  in one lamina.  A repetitive unit cell 

(RUC) is chosen as the volume enclosed by the mid-surface and top-surface of the laminate, the 

surfaces of two consecutive cracks, and a unit length along the parallel cracks (Figure 1).  The 

length of the RUC is 2l and it is related to crack density as  

 

 2 1/l   (1) 

 

A material coordinate system denoted by x1-x2-x3 is used, where the x1 and x2 are in-plane 

coordinates aligned and perpendicular to the fibers of lamina k, respectively.   

 

Figure 1. Representative unit cell (RUC) and coordinate systems used. 
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Due to the stress-free conditions on the top and bottom surfaces of a thin laminate we have 

 

 ( )

3 0i   (2) 

 

Due to symmetry of the LSS and load we have 

 

 
( ) ( )

1 2

0
i iw w

x x

 
 

 
 (3) 

 

where w
(i)

 is displacement in the x3 direction of the i
th

 lamina. Finally, a linear variation of shear 

stress in the x3 direction is assumed in each lamina 
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where , 1

13

i i  is the shear stress at the interface between the i
th

 and i+1
th

 plies, and 1,

3

i ix   is the value 

of the x3 coordinate at the interface between the i-1
th

 and i
th

 laminae. Crucial to the analysis is 

finding averaged displacements in the laminate for a given in-plane loading condition. A 

thickness average of the mechanical parameters is defined as 

 

 
3

1
ˆ

h
dx

h
    (5) 

 

where hat denotes an averaged quantity and h represents the thickness over which the average is 

taken; it may be the thickness of the laminate or the thickness of one lamina.  Then, the overall 

reduced stiffness properties can be obtained applying unit normal and shear loads and calculating 

the induced deformations. The analysis begins writing (a) the constitutive and (b) equilibrium 

equations in terms of averaged quantities. Damage in the form of cracks is analyzed as being 

discrete (not homogenized) with crack density . Since the discrete nature of the cracks is 

included, the material between cracks is undamaged, with stiffness ( )kQ calculated in terms of 

undamaged (virgin) moduli [1,(5.23)] in the coordinates of lamina k (Figure 1). Then, the 
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constitutive equations of the cracked lamina can be written in terms of averaged in-plane 

displacements and undamaged stiffness as follows 

 

 

 
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 (6) 

where overline denotes undamaged quantities, and ( ),1 and ( ),2 represent partial derivatives 

respect x1 and x2 directions, respectively.  The remaining laminae have reduced properties that 

can be calculated in terms of their previously calculated damage values ( ) ( )

2 6,m mD D  as follows  
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 (7) 

where the damaged stiffness in the coordinate system of lamina k (Figure 1) is  
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 (8) 

 

where k and m are labels for the cracked lamina and the remaining laminae, respectively;  
1

T


 is 

the stress transformation matrix [1,(5.33)] from the material coordinate system of lamina m to 

lamina k, with the angle  measured from k to m [1, Fig. 5.9], and ( )

2

mD  and ( )

6

mD  are variables 

which represent the transverse and shear stiffness reduction of the laminae m k [16, section 

8.2].  Note in (8) that damage in the homogenized laminae m affects the shear-extension 

coupling terms with the implication that a balanced laminate might not remain balanced as 

damage evolves, perhaps differently, in various laminae.   
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The constitutive equations for out-of-plane shear strains and stresses can be expressed in terms of 

interface shear stresses and averaged displacements by taking a weighted average of these 

equations (see Appendix). These equations are usually called shear lag equations [37], and they 

are written as follows 

 

 

( 1) 2, 1( ) ( 1) ( 1)
45 55 23

2, 1( ) ( 1)
44 45 13

( 1) ( ) 1,( 1) ( ) ( )
45 55 45 55 45 5523

1,
44 45 44 45 44 4513

ˆ ˆ

ˆ ˆ 6

3 3 6

i i ii i i

i ii i

i i i ii i i

i i

S Su u h

S Sv v

S S S S S Sh h h

S S S S S S









   

 

 



    
    

     

       
                

( ) , 1

23

, 1

13

i i i

i i









 
 
 

 (9) 

 

Finally, the equilibrium equations in the x and y direction can be written as 
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Replacing equations (6)-(8) and (9) into equations (10) leads to a second-order system of partial 

differential equations for the unknown displacements.  A solution for the second-order system of 

partial differential equations (PDE) (10) is found by the inverse method. That is, a solution like 

the one below (11) is proposed and verified to satisfy the PDE.  Based on our familiarity with the 

direct solution of a much simpler problem, i.e., the [0n/90]S laminate in [44,41], and prior use of 

the indirect method in [38,3,4,28], the following expression for the displacement is proposed 

herein as a solution for the system (10), as follows 
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where n is half the number of plies in the laminate; ai and λ are unknown constants and 
1

c , 
2

c , 

12

c  are constant deformations that appear during the integration procedure. Replacing (11) into 

(10) leads to an eigenvalue system where ai and λ are the eigenvectors and eigenvalues for the 

system.  The final solution is the linear combination of all particular solutions, as follows 

 

 

(1)
1 12 1

(2)
2 12 1

( ) 2
12 1

2 2(1)
1 1 2 12

(2)
2 2

( )
2 2

ˆ 1 2

ˆ 1 2

ˆ 1 2
sinh( )

ˆ 1 2

ˆ 1 2

ˆ

c c

c c

c cn n
n

j j c c
j n

c
n

cn
n j

au

au

au
A x x

av

av

av

 

 

 


 





 



    
    
    
    
    

          
    
    
    
    
        

 1

12

121 2

c

c

x





 
 
 
 
 
 
 
 
 
 
 
  

 (12) 

 

where Aj, 1

c , 
2

c , 
12

c   are unknown quantities.  However, two λi eigenvalues are equal to zero, 

so the number of unknowns is reduced to 2n+1.   

 

To find the values of these constants, the following boundary conditions are used.  First, stress-

free conditions are assumed at the surfaces of the cracks in the cracked lamina k, as follows  
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Equation (13) represents a set of two independent conditions.  Second, the stresses in the 

uncracked surfaces are related to the external loads by 

 



Composites Part B, 41:124—132, 2010. 

 

 10 

 

 

0.5
( ) ( )

2 1 2 2
0.5

1

0.5
( ) ( )

12 1 12 2
0.5

1

( )
( )

1 2 1 2

1

ˆ ˆ(1 ) , at 

ˆ ˆ(1 ) , at 

ˆ ˆ , at 
2

n
m m

mk

m

n
m m

mk

m

in l
i

l
i

h dx h x l

h dx h x l

h
dx h x l

l

  

  

 










   

   

  

 

 

 

 (14) 

 

where 1, if , 0 otherwise,mk m k    and 1 2 12
ˆ ˆ ˆ, ,    are the components of the external load 

applied to the laminate in the material coordinates.  Three independent conditions can be 

obtained from (14).  Finally, the displacements in the x2 direction are assumed to be the same for 

all un-cracked ply surfaces 

 

 

( ) ( )

2

( ) ( )

2

ˆ ˆ , at 

ˆ ˆ , at 

m r

m r

u u x l m k

v v x l m k

    

    
 (15) 

 

where r is the un-cracked lamina taken as reference.  A total of 2(n – 2) independent conditions 

that can be obtained from (15).  Equations (13)-(15) represent a set of 2n+1 boundary conditions, 

which allows us to calculate all the unknowns.  Then, the average strains can be calculated as 
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where m is one of the un-cracked laminae (m≠k).  To obtain the laminate compliance S in the 

material coordinate system of the cracked lamina, three unit-load cases are considered 
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and the deformations obtained for each case are the components of S in the material coordinate 

system of the cracked lamina, as 
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The compliance matrix °S in the global coordinate system is obtained using the coordinate 

transformation 

 

 °     
1

( ) ( )
T

k kS T S T 
 

  
 

 (19) 

 

where [T] is the coordinate transformation matrix [1,(5.35)] and k  is the fiber direction of the 

cracked lamina.  The overall elastic properties for the laminate can be written [1,(6.32)] as 

 

 ° ° ° ° °1 1 1

11 22 12 11 33; ; / ;X Y XY XYE S E S v S S G S
  

      (20) 

 

A very important characteristic of the procedure presented here is that stiffness of the damaged 

lamina are function only of the undamaged elastic properties and the crack densities k .  Unlike 

plasticity-inspired formulations [16,Chapter 8], there is no need for defining damage evolution 

functions in terms of additional parameters, and thus no need to adjust such parameters using 

additional experimental data.  

 

The damage parameters ( ) ( )

2 6, ,k kD D  for lamina k can be calculated considering the reduction of 

the laminate stiffness due to matrix cracking in this lamina.  The undamaged stiffness matrix of 

the laminate Q  in the material coordinate system of the cracked lamina is calculated in terms of 

the undamaged properties for the laminae as follows 

 

 
( ) ( )1

( ) ( )
k mn

k m

m

h h
Q Q Q

H H



   (21) 

 

where H is the laminate thickness, ( )kQ  is the undamaged stiffness matrix of lamina k in the 

material coordinate system of lamina k; and ( )mQ  are the undamaged stiffness matrices for the 
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homogenized laminae m k  in the material coordinate system of lamina k.  When the crack 

density grows, the damaged laminate stiffness reduces according to  

 

 
( ) ( )1

( ) ( )
k mn

k m

m

h h
Q Q Q

H H



   (22) 

 

Since the damaged laminate stiffness 1Q S   can be computed from (18), and the damaged 

lamina stiffness ( )mQ are given by the coefficients in (8), then, ( )kQ  can be computed from (22).  

Finally, the damage variables are calculated as follows 

 

 

( ) ( ) ( )

2 22 22

( ) ( ) ( )

6 66 66

( ) 1 /

( ) 1 /

k k k

k

k k k

k

D Q Q

D Q Q





 

 
 (23) 

 

where (8) and (23) are consistent with each other [16, section 8.2, eqs. (8.62,8.63,8.67)]. 

 

 

2.2. Damage Activation Function 

The energy release rate (ERR) associated with crack opening displacements in mode I and mode 

II can be expressed as 

 

I
I

II
II

U
G

A

U
G

A


 




 



 (24) 

where UI and UII are the strain energy for mode I and mode II, respectively; and A is the crack 

area.  The strain energy components IU  and IIU  can be expressed in terms of the stress and 

strain in the material coordinate system of the cracked lamina as 

 

 

 

1 1 2 2

12 12

ˆ ˆˆ ˆ

2

ˆˆ

2

uc
I

uc
II

V
G

A

V
G

A

   

 

 
 




 



 (25) 
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where Vuc is the volume of the unit cell.  The average stress in the laminate ̂  can be expressed 

in terms of the average strain ̂ , using the laminate constitutive equations.  Therefore, (25) can 

be rewritten as 

 

11 12 16 12 22 26
1 1 2 12 1 2 12

16 26 66
12 1 1

2

2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2

ˆ ˆ ˆ ˆ
2

uc
I

uc
II

V Q Q Q Q Q Q
G

A A A A A A

V Q Q Q
G

A A A

      

   

         
          

         

   
    

   

 (26) 

where 1Q S   is given by (18),  , and A is the crack area in the Vuc; that is, four times 

the thickness of the lamina (2 faces of the crack times 2 symmetric cracking laminae).  While 

several failure criteria in terms of ERR have been proposed for composite materials [43], the 

failure criterion proposed in [40] is recast here as a damage activation function [15, chapter 8] as 

follows  

 
( ) ( ) ( )

( ) (1 ) 1 0I I II

IC IC IIC

G G G
g r r

G G G

  
        (27) 

where IC IICr G G  and GIC and GIIC are the critical values of the ERR for mode I and II.  Since 

the crack is assumed to span the entire lamina thickness (Fig. 1) and to propagate in the 

longitudinal direction, for the case of thick laminae having initial defects smaller than the lamina 

thickness [46], equation (27) may yield somewhat conservative estimates of the first crack strain, 

as small cracks need to propagate through the thickness before developing into thickness cracks.  

 

3. SOLUTION ALGORITHM 

The proposed algorithm consists of (a) strain steps, (b) laminate-iterations, and (c) lamina-

iterations.  The state variables for the laminate are the array of crack densities for all laminae k 

and the strain tensor .  At each load (strain) step, the strain on the laminate is increased and the 

laminae are checked for damage modes by evaluating the damage activation functions 0g   of 

all possible modes of damage, including 

1. Longitudinal tension 

2. Longitudinal compression 

3. Transverse tension 

4. Transverse compression 
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3.1. Lamina iterations  

When matrix cracking is detected (mode 3) in, say, lamina “k”, an RMA is invoked to iterate 

and adjust the crack density k in the k-lamina in such a way that gk returns to zero while 

maintaining equilibrium.  The iterative procedure works as follows. At a given strain level  for 

the laminate and given k for lamina k, calculate the value of the damage activation function gk 

and the damage variables ( ) ( )

2 6( ), ( ),k k

k kD D  both univocal functions of k.  The RMA calculates 

the increment (decrement) of crack density as [16, chapter 8],  

 / k
k k

k

g
g




  


 (28) 

until 0kg   is satisfied within a given tolerance, for all k=1…N where N is the number of 

laminae in the laminate.  The analysis starts with a negligible value of crack density present in all 

laminae (=0.01 cracks/mm were used in the examples).  

 

 

3.2. Laminate iterations   

To calculate the stiffness reduction of a cracked lamina (k-lamina), all of the other laminae (m-

laminae) in the laminate are considered undamaging during the course of lamina-iterations in 

lamina k, but with damaged properties calculated according to the current values of their damage 

variables ( ) ( )

2 6,m mD D .  Given a trial value of k, the analytical solution provides 

( ) ( )

2 6, ,  and k k

kg D D for lamina k assuming all other laminae m k do not damage while performing 

lamina iterations in lamina k.  Since the solution for lamina k depends on the stiffness of the 

remaining laminae, a converged iteration for lamina k does not guarantee convergence for the 

same lamina once the damage in the remaining laminae is updated, unless of course the 

remaining laminae remain undamaged.  In other words, within a given strain step, the stiffness 

and damage of all the laminae are interrelated and they must all converge.  This can be 

accomplished by laminate-iterations; that is, looping over all laminae repeatedly until all laminae 

converge to 0kg  for all k.  Unlike classical RMA set up for plasticity (where the hardening 
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parameter is monotonically increasing [16, chapter 8]), the crack density k must be allowed to 

decrease if in the course of laminate iterations, other laminae m k  sustain additional damage 

that makes the laminate more compliant and thus requires a reduction of k. 

 

 

 

 

Table 1. Material properties for the laminates considered in study. 

 IM600/#133 [28] Varna et al. [2] 

E1 (GPa) 147 44.7 

E2 (GPa) 8.31 12.7 

12  0.352 0.297 

G12 (GPa) 

G23 (GPa) 

4.7 

2.865 * 

5.8 

4.5 * 

Ply thickness (mm)  

GIC kJ/m
2
 [43] 

GIIC kJ/m
2
 [43] 

0.14 

0.175 

1.561 

0.144 

0.175 

1.561 

* Assumed value. 
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Figure 2. Predicted moduli and strain required to achieve increasing values of crack density. Moduli results 

compared with predictions from [28]. 

 

 

 

 

4. RESULTS AND DISCUSSION 

Comparison between modulus /x xE E  and Poisson’s ratio 
xy  predicted by the proposed 

formulation and predictions from [28] is presented in Figure 2 to verify the calculation of 

reduced stiffness due to arbitrarily oriented matrix cracks.  A [45]S laminate made of 

IM600/#133 composite with material properties given in Table 1 is used, as it was in [28].  The 

change of Young’s modulus is obtained as function of the crack density 1 of the  = 45
o
 lamina 

while the crack density 2 of the  = -45
o
 lamina was kept constant and equal to 1 crack/mm, as 

it was in [28].  An excellent match is observed between the two formulations.  While [28] 

computed the stiffness reduction in both laminae simultaneously using a formulation based on 

oblique coordinates, the proposed method computes the stiffness reduction one lamina at a time, 

in a Cartesian coordinate system, and uses an iterative method to converge to the solution for all 

laminae.  The use of a Cartesian coordinate system is advantageous because methods based on 
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oblique coordinates experience numerical instability when the angle between the two oblique 

axes, and thus between two damaging laminae, is either small or close to . The proposed 

formulation has no such limitations. Also note that the formulation in [28] does not provide the 

strain corresponding to crack density because it does not have a damage evolution criteria such 

as in the model proposed herein; the model in [28] is driven by crack density only. Also note that 

the strain profile displayed in Figure 2 is peculiar because of the physically unrealistic nature of 

this example, namely, the crack density was kept constant at =1 crack/mm.  

 

A classical example of a laminate that display significant transverse matrix cracking is the cross 

ply; in this case a [0/908/01/2]S, where the crack open in pure mode I.  It can be seen in Figure 3 

that the proposed formulation predicts well the strain required for crack initiation and the 

evolution of crack density with applied strain when compared to experimental data of [2].  

Furthermore, the degradation of Young’s modulus /x xE E  and Poisson’s ratio 
xy , as shown in 

Figure 4, is predicted accurately as a function of crack density, thus verifying that the proposed 

formulation can predict accurately crack initiation, evolution, and stiffness reduction.  

 

Deviating from the classical example, a [0/704/-704/01/2]S laminate is prone to matrix cracking 

but in this case the cracks are subjected to both mode I and mode II.  It can be seen in Figure 5 

that the proposed formulation predicts well the strain required for crack initiation and the 

evolution of crack density with applied strain when compared to experimental data of [2].   

 

With even more preponderance of mode II crack opening displacement, a [0/554/-554/01/2]S 

laminate is prone to matrix cracking but in this case the laminate is much stiffer in the load 

direction.  It can be seen in Figure 6 that the proposed formulation predicts well the strain 

required for crack initiation (experimental set 1), and the evolution of crack density with applied 

strain follows the trend of the experimental data quite well.   

 

Damage initiation and degradation of laminate Young’s modulus /x xE E  and Poisson’s ratio xy  

are accurately predicted as shown in Figure 7 for a [02/904]S laminate.  Load redistribution from 

the 90-deg lamina to the longitudinal laminae eventually brings about longitudinal tensile failure 
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as clearly shown in the figure, which occurs when the stress in of the 0-deg lamina reaches the 

longitudinal tensile strength of the unidirectional (UD) lamina 1TF . 

 

Excellent predictions are obtained for less stiff laminates as shown in Figures 8-10 for [15/-

15/904]S, [30/-30/904]S, and [40/-40/904]S laminates, where models predictions are compared to 

experimental data from [23].  The proposed formulation yields good predictions even when the 

main load carrying laminae are at a steep angle, as it is the case for the [40/-40/904]S laminate.   

 

The values of GIc and GIIc from [43] were determined experimentally at room temperature and 

used in this manuscript to analyze the experimental data of [2,23] that were also obtained at 

room temperature.   In order to perform the analysis at temperatures other than room temperature 

it is necessary to extend the formulation by calculating residual thermal stresses, and this will be 

the subject of a subsequent study.  

 

 

Figure 3. Crack density vs. applied strain for a [0/908/01/2]S laminate. 
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Figure 4. Laminate /x xE E and xy vs. crack density for a [0/908/01/2]S laminate. 

 

 

Figure 5. Crack density vs. applied strain for a [0/704/-704/01/2]S laminate. 
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Figure 6. Crack density vs. applied strain for a [0/554/-554/01/2]S laminate. 

 

 

Figure 7.  Loss of laminate modulus /x xE E and xy as a function of applied strain for a cross-ply laminate.  
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Figure 8.  Loss of laminate modulus modulus /x xE E and xy as a function of applied strain 

for a [15/-15/904]S laminate. 

 

 

Figure 9.  Loss of laminate modulus modulus /x xE E and xy as a function of applied strain 

for a [30/-30/904]S laminate. 
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Figure 10.  Loss of laminate modulus modulus /x xE E and xy as a function of applied strain 

for a [40/-40/904]S laminate. 

 

 

5. CONCLUSIONS 

Good agreement between predicted results and experimental data for a variety of laminates 

support the thesis that critical energy release rate (ERR) in mode I and II can be used as material 

properties, independent of lamina thickness and LSS, to predict crack initiation in lieu of strength 

failure criteria.  Based on just two experimental values of critical ERR (mode I and II), without 

postulating evolution (kinetic) equations and without the associated experimental effort needed 

to determine their adjustable parameters, the proposed model is able to predict accurately the 

strain at crack initiation, the evolution of crack density as a function of applied strain and the 

reduction in laminate moduli.  This is possible because the proposed model provides analytical, 

accurate prediction of stiffness degradation as a function of crack density in each lamina.  The 

proposed model is focused on matrix-dominated damage but it proves crucial for accurate 

prediction of fiber-dominated modes as well, because the stress redistribution resulting from 

matrix modes is critical for accurate prediction of fracture due to fiber dominated modes. 

Existing fiber-dominated failure models, e.g., longitudinal tensile failure based on Weibull 
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distribution of fiber strength and longitudinal compression failure based on Gaussian distribution 

of fiber misalignment, are able to accurately predict fiber-failure modes provided the stress in the 

fiber direction is accurately determined taking into account stress redistribution from the 

cracking laminae. The predicted stress redistribution, from the cracking lamina to the rest of the 

laminate, given by the proposed model is accurate, as it is shown by accurate prediction of 

longitudinal failure of the 0-deg lamina in a [02/904]S laminate after the 90-deg lamina is 

degraded by matrix cracks.  Intermediate damage variables D2, D6, for the laminae (both 

univocal functions of the crack densities in the laminae, which are the only state variables), and a 

modified return mapping algorithm are shown to be effective in expanding the shear-lag solution 

for one cracking lamina to situations where several, if not all laminae might be degrading.  In 

this way, the proposed formulation predicts fracture initiation, evolution, stiffness degradation, 

and stress redistribution accurately in terms of measurable material properties (UD lamina 

moduli and critical ERR).  Unlike plasticity-inspired CDM models, the proposed model does not 

need additional parameters that would have to be determined with additional experimentation at 

significant cost. Comparison with available experimental data for crack initiation and evolution, 

as well as for laminate stiffness degradation is good.   

APPENDIX  

The relationship between the out-of-plane shear stresses and the averaged displacements can be 

obtained by calculating a weighted average of in-plane deformation.  Using Hooke’s law, the 

shear strains can be expressed in terms of the shear stresses as 

 

( ) ( ) ( ) ( ) ( )

23 44 23 45 13

( ) ( ) ( ) ( ) ( )

13 45 23 55 13

i i i i i

i i i i i

S S

S S

  

  

 

 
. (A1) 

Equation (A1) can be written in terms of displacements, and making use of (3)-(4), the following 

equation is obtained 

 

   

 

( ) ( ) ( ) , 1 1, , 1 ( ) , 1 1, , 13 3
,3 ,1 45 23 23 23 55 13 13 13( ) ( )

( ) ( ) ( ) , 1 1, , 1 ( ) , 1 1, ,3
,3 ,2 44 23 23 23 45 13 13 13( )

i i i i i i i i i i i i i i i ii i

i i

i i i i i i i i i i i i i i ii

i

h x h x
u w S S

h h

h x
v w S S

h

     

     

     

    

    
         

   

 
       

 
 1 3

( )

i i

i

h x

h
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 
 

 (A2) 

The following weighted average is defined 
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   
1

3 3( )

1 i

i

h

ii h
h x dx

h 

  (A3) 

Applying the operator shown in (A3) on both sides of (A2), the following relationship is 

obtained 

 

( ) ( ) ( ) ( )
( ) ( ) , 1 ( ) 1, ( ) , 1 ( ) 1,

1 45 23 45 23 55 13 55 13

( ) ( ) ( ) ( )
( ) ( ) , 1 ( ) 1, ( ) , 1 ( ) 1,

1 44 23 44 23 45 13 45 13

ˆ( )
6 3 6 3

ˆ( )
6 3 6 3

i i i i
i i i i i i i i i i i i i

i

i i i i
i i i i i i i i i i i i i

i

h h h h
u h u S S S S

h h h h
v h v S S S S
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   

   



   



     

     

 (A4) 

where u(hi-1) and v(hi-1) are the in-plane displacements evaluated at z = hi-1. Following a similar 

procedure for ply (i-1), but using (z – hi-2) as a weight, the following relation is obtained 

( 1) ( 1) ( 1) ( 1)
( 1) ( 1) 2, 1 ( 1) 1, ( 1) 2, 1 ( 1) 1,

1 45 23 45 23 55 13 55 13

( 1) ( 1) ( 1)
( 1) ( 1) 2, 1 ( 1) 1, ( 1)

1 44 23 44 23 45 13
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6 3 6 3
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6 3 6

i i i i
i i i i i i i i i i i i i

i

i i i
i i i i i i i i i
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h h h h
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  

   
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

  
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2, 1 ( 1) 1,

45 13
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i
i i i ih

S 


   

  

  (A5) 

Adding (A4) and (A5) and presenting the result in a matrix form we obtain 

( 1) ( 1) ( )2, 1 1,( ) ( 1) ( 1) ( 1) ( )
45 55 45 55 45 5523 23
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