
Annals of Solid and Structural Mechanics, 1:29—40, 2010. 

 

 1 

Stiffness Reduction and Fracture Evolution of Oblique Matrix Cracks 

in Composite Laminates  
 

 

Daniel H. Cortes
1
 and Ever J. Barbero

2
 

 

Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 

26506. 

 

 

Abstract 

 

A constitutive model to predict the onset and evolution of matrix cracking and the 

subsequent stiffness reduction is derived analytically.  The formulation is valid for 

symmetric laminates with otherwise arbitrary stacking sequence and matrix cracks in one 

or two directions.  The proposed model calculates the reduction of the mechanical 

properties of the damaged laminate as function of crack densities.   The onset and 

evolution of matrix cracks are predicted by the model in terms of undamaged lamina 

properties and the critical strain energy release rates for modes I and II (GIC and GIIC).  

Therefore, there is not need for postulating damage evolution functions and no need for 

empirically adjusting the associated material parameters.  The model formulation was 

specialized for the particular case of unidirectional loading.  Comparison with 

experimental data showed an excellent prediction of crack initiation and evolution for a 

variety of laminate stacking sequences.  The combination of constitutive and damage 

evolution equations formed an integrated, mechanistic damage model with no adjustable 

parameters.  
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Introduction 

Laminate composite materials are prone to variety of failure modes.  However, matrix 

cracking parallel to the fiber direction on off-axis plies is usually the first damage mode 

observed for in-plane loading.  Although matrix cracking is not a catastrophic failure 

mode, its presence triggers the initiation of other damage modes such as delamination, 

fiber-matrix debonding, and fiber breakage that usually lead to fracture. Furthermore, 

matrix cracks drastically increase the permeability of the material, thus allowing access to 

liquid and gas contaminants that may degrade the fibers and the fiber-matrix interface. 

Also, it facilitates leakage of liquid and gas that would otherwise be contained in tanks, 

pressure vessels, and other similar structures.  In addition, matrix cracks lead to stiffness 

reduction and stress redistribution to adjacent laminae. Therefore, the understanding and 

prediction of matrix cracking has held considerable attention in the literature.   
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Matrix cranking is usually observed when a tensile stress perpendicular to the fibers is 

present.  Usually, unidirectional loading of cross-ply laminates produces matrix cracking 

of the 90 ply when the load is applied in 0 direction.  However this not the only case. 

Varna et al. (1999) found in experiments for balanced [0/4/01/2]s laminates that matrix 

cracks appear for angles as low as  = 40. Yokozeki et al. (2005a, 2005b) observed 

matrix cracking for ply angles as low as 30 for unbalanced [0//90]s laminates.  In 

addition to this, they showed matrix cracking initiation due to matrix cracks in adjacent 

plies.  Other experimental observations can be found in several reviews (Nairn 2000; 

Nairn and Hu 2004). 

 

Continuum Damage Mechanics (CDM) is a common methodology for the prediction of 

the stiffness reduction in the presence of one or several damage modes.  In CDM, damage 

is represented by internal state variables.  Evolution equations for these variables are 

postulated in terms of additional parameters, which must be adjusted for each material 

and each configuration using experiments.  A review on this methodology can found on 

Talreja (1994) and Barbero (2007), with more recent publications included in (Miami, et 

al. 2007a; Li, et al. 1998; Barbero, et al. 2005; Barbero and DeVivo 2001; Barbero and 

Lonetti 2002, 2001; Lonetti, et al. 2003; Miami, et al. 2007b; Schuecker and Pettermann 

2006).  A disadvantage of CDM is the difficulty in obtaining the model parameters from 

experimental data.  This issue have been partially solved by combining CDM with other 

techniques such as micromechanics (Lundmark and Varna 2005; Singh and Talreja 2008; 

Varna et al. 2001b; Varna et al. 2001a).  Other methods include the use of fracture 

mechanics (Joffe et al. 2001) and in-situ damage effective functions (Kashtalyan and 

Soutis 2002).  Another approach is the analytical solution of the stress and strains in a 

representative volume cell (Nuismer and Tan 1988; Yokozeki and Aoki 2005), this 

method is particularly interesting because the material properties of the damaged 

laminate depend exclusively on the crack density and no additional parameters or 

functions are needed. However, the solutions presented in (Nuismer and Tan 1988; 

Yokozeki and Aoki 2005) are limited to very particular cases. In (Nuismer and Tan 1988) 

the Laminate Stacking Sequence (LSS) is restricted to [0/90n]s where only the 90-lamina 

can damage. In (Yokozeki and Aoki 2005) the LSS is restricted to [n/m]s with cracks 

on both directions. 

 

Once the mechanical behavior of damaged laminates is modeled by a constitutive 

equation, a damage evolution equation has to be defined.  Several failure criteria have 

been proposed for the cracking initiation (Camanho, et al. 2006; Davila, et al. 2005; 

Kashtalyan and Soutis 2007) based on strength models and energy balance methods.  

Other studies were focused on the matrix cracking evolution as a function of the applied 

load (Katerelos, et al. 2007; Li, et al. 1998; Tan and Nuismer 1989; Zhang, et al. 1992).  

Failure criteria are usually based on stress, strain, or strain energy present in the laminate 

during loading. Therefore, the prediction of damage evolution depends on how accurately 

the elastic properties of the cracked plate can be predicted.  

 

In this study, an analytical model is proposed to predict both stiffness reduction and 

matrix cracking evolution for symmetric laminates with arbitrary stacking sequence and 

cracks in one or two directions.  The proposed model calculates the reduction of the 
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mechanical properties due to matrix cracking as a function of crack densities only. 

Although previous studies have also proposed similar constitutive relations for the 

stiffness reduction, in this study the procedure has been generalized to consider arbitrary 

stacking sequences.  Additionally, a damage evolution formulation, which allows 

prediction of the crack densities as a function of the applied load is derived.  An 

important characteristic of the proposed model is that the crack evolution is determined 

based on the critical values of the strain energy release rate for modes I and II (GIC and 

GIIC).  Therefore, there is not need for postulating damage evolution functions and no 

need for empirically adjusting the associated material parameters.  Consequently, a 

complete damage model is obtained by combining the constitutive relations and the 

damage evolution formulation. 

 

Stiffness Reduction 

 

In this section the overall stiffness reduction of a laminated composited is studied 

analytically. The analysis presented here is valid for a symmetric composite with a 

general LSS and matrix cracks parallel to the fibers, oriented at one or two off-axis 

angles. A Repetitive Unit Cell (RUC) is chosen as the volume enclosed by the laminate 

mid surface, laminate top surface and by the parallelogram formed by the crossing of two 

successive cracks oriented at angles  and  (Fig. 1).  The lengths 2l1 and 2l2 of the sides 

of parallelograms depend on the crack densities 1 and 2 for cracks at angles  and , 

respectively, as follows   

 1 11 2 sin( )l      (1a) 

 2 21 2 sin( )l     (1b) 

Orthogonal and oblique global coordinate systems, respectively denoted by X-Y-Z and x-

y-z are used for the present analysis. The x and y axes for the oblique coordinate system 

are aligned with the two set of matrix cracks (Fig. 1).  When only one crack orientation is 

considered, one in-plane axis is aligned with the cracks and the other in-plane axis can be 

arbitrarily oriented.  Two coordinate transformations (covariant and contravariant) can be 

defined between the orthogonal and oblique coordinate systems for second-order tensors 

(Fung 1965) 

 T
A = TAT  (covariant) (2a) 

 1T 
A = T AT (contravariant) (2b) 

 

cos sin 0

cos sin 0

0 0 1

 

 

 
 


 
  

T . (2c) 

 

In order to obtain physically valid expressions, displacements and strains transformations 

were chosen to be covariant, and forces and stresses transformations to be contravariant.  

Transformation of the mechanical properties to the oblique coordinate system can be 

done using Voigt notation for strains and stresses (see Appendix A).  Hereinafter, the 

procedure to obtain the stiffness reduction due to matrix cracks is presented in the oblique 

coordinate system.  The following assumptions were adopted.  Due to the stress-free 

conditions on the top and bottom surfaces of a thin laminate we have 



Annals of Solid and Structural Mechanics, 1:29—40, 2010. 

 

 4 

 ( ) 0i

z  , (3) 

where (i) denotes the i
th

 lamina. Due to symmetry of the LSS we have 

 
( ) ( )

0
i iw w

x y

 
 

 
, (4) 

where w
(i)

 is displacement in the z direction of the i
th

 lamina. Finally, a linear variation of 

shear stress in the z direction is assumed 

  
 1,

( ) 1, , 1 1,

( )

i i

i i i i i i i

xz xz xz xz i

z z

h
   



  


    (5a) 

  
 1,

( ) 1, , 1 1,

( )

i i

i i i i i i i

yz yz yz yz i

z z

h
   



  


    (5b) 

where 
, 1i i

yz 
is the shear stress at the interface between the i

th
 and i+1

th
 plies, and 1,i iz   is 

the value of the z coordinate at the interface between the i-1
th

 and i
th

 laminae. Crucial to 

the analysis is finding averaged displacements in the laminate for a given in-plane 

loading condition. An average of the mechanical parameters across the lamina is defined 

as 

 
( )

( ) ( )

( )

1
i

i i

i h
dz

h
   , (6) 

where an over-line denotes an averaged quantity.  Notice that the average shown in Eq. 

(6) is for the ply (i) and should not be confused with the average for the entire laminate 

which will be denoted by  .  The overall reduced stiffness properties can be obtained 

applying unit normal and shear loads and calculating the induced deformations. The 

analysis begins by stating the fundamental equations (Hooke’s law and equilibrium 

equations) in terms of averaged quantities. The Hooke’s law for in-plane stresses can be 

written in terms of averaged in-plane displacements, after applying condition (4), as 

 

 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 , 12 , 16 , ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

21 , 22 , 26 , ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

61 , 62 , 66 , ,

i i i i i i i i

x x y y x

i i i i i i i i

y x y y x

i i i i i i i i

xy x y y x

Q u Q v Q u v

Q u Q v Q u v

Q u Q v Q u v







   

   

   

 (7) 

where ( ),x and ( ),y represent partial derivatives with respect to x and y directions, 

respectively, and 
( )i

ijQ  are the stiffness matrix of a lamina in the oblique coordinate 

system.  The transformation of the properties from orthogonal to oblique coordinate 

system is described in Appendix A.  Hooke’s law for out-of-plane shear strains and 

stresses can be expressed in terms of interface shear stresses and averaged displacements 

by taking a weighted average of these equations (see Appendix B). These equations are 

usually called ‘shear lag’ equations, and they are written as follows. 
( 1) ( 1) ( )2, 1 1,( ) ( 1) ( 1) ( 1) ( )

45 55 45 55 45 55

2, 1 1,( ) ( 1)
44 45 44 45 44 45

( )
( )

45 55

44 45

6 3 3

6

i i ii i i ii i i i i
yz yz

i i i ii i

xz xz

i
i

S S S S S Su u h h h

S S S S S Sv v

S Sh

S S

 

 

     

  

           
                          

 
  

 

, 1

, 1

i i

yz

i i

xz









 
 
 
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  (8) 

where S44, S45 and S55 are the components of the out-of-plane shear compliance matrix in 

oblique coordinates (Appendix A).  Finally, the equilibrium equations in the x and y 

direction can be written as 

  ( ) ( ) , 1 1, ( )

, , 0i i i i i i i

x x xy y xz xz h         (9a) 

  ( ) ( ) , 1 1, ( )

, , 0i i i i i i i

xy x y y yz yz h         (9b) 

Replacing equations (7) and (8) into equations (9) leads to a second-order system of 

partial differential equations in terms of the ply-averaged displacements.  The analytical 

solution of that system can be expressed as 

    

(1)
1 1

(2)
2 2

( )

(1)
1 1

(2)
2 2

( )
2 2

sinh sinh
1 2

1 2

1 2

c

x

c

x

cn
n n x

c

n n xy

c

n n xy

cn
n n xy

a bu

a bu

a bu
x y

a bv

a bv

a bv






 







 

 

      
     
     
     
     

            
     
     
     
     
          

1 2

1 2

1 2

c

xy

c

xy

c

xy

c

y

c

y

c

y

x y













 
  
  
  
  
  


  
  
  
  
  
    

 (10) 

where n is half the number of plies in the laminate; c

x , 
c

y , 
c

xy  are constant deformations 

that appear during the integration procedure; and ai, bi,  and  are unknown constants 

with lack of physical meaning. Replacing (10) into (9) leads to two eigenvalue systems 

where ai -  and bi -  are the pairs of eigenvectors and eigenvalues for each system. The 

final solution is the linear combination of all particular solutions, as follows 

   

(1)
1 1

(2)
2 2

( ) 2 2

(1)
1 11 1

(2)
2 2

( )
2 2

sinh sinh
1 2

1 2

c

x

c

x

cn n n
n n x

j j j j c
j jn n xy

c

n n xy

n
n nj j

a bu

a bu

a bu
A x B y

a bv

a bv

a bv






 





  

 

     
     
     
     
     
            
     
     
     
     
         

 

1 2

1 2

1 2

1 2

c

xy

c

xy

c

xy

c

y

c

y

c c

xy y

x y











 

   
   
   
   
   
   


   
   
   
   
   
      

 (11) 

where Aj, Bj 
c

x , 
c

y  and 
c

xy  are unknown quantities. However, two i and two i 

eigenvalues are equal to zero, so the number of unknowns is reduced to 4n-1.  To find the 

values of these constants, the following boundary conditions are used. First, stress-free 

conditions are assumed at the surfaces of the cracks 

 
1

1

( )

1

1
0

2

l

x
l

dy
l




 , at x = l2 (12a) 

  
1

1

( )

1

1
0

2

l

xy
l

dy
l




 , at x = l2 (12b) 
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2

2

( )

2

1
0

2

l

y
l

dx
l




 , at y = l1 (12c) 

 
2

2

( )

2

1
0

2

l

xy
l

dx
l




 , at y = l1 (12d) 

where , ,   are the labels for laminae with cracks along y and x directions, respectively 

(Figure 1).  Equation (12) represents a set of 2  2N N   independent conditions, where 

N  and N  are the number of  - and  -laminae, respectively.  Second, the stresses in 

the uncracked surfaces are related to the external loads by 

 
1

1

( )
( )

1 12

n N ux
l

ux

x x
l

ux

h
dy h

l



 





  , at x = l2 (13a) 

 
1

1

( )
( )

1 12

n N ux
l

ux

xy xy
l

ux

h
dy h

l



 





  , at x = l2 (13b) 

 
2

2

( )

1 22

n N uy
l

uy

y y
l

uy

h
dx h

l



 





  , at y = l1 (13c) 

where x , y  and xy  are the components of the external load applied to the laminate; 

and ux and uy are the labels for uncracked ply surfaces normal to x and y directions, 

respectively.  Three independent conditions are obtained from Eq. (13).  Finally, the 

displacements in the x and y directions are assumed to be the same for all uncracked ply 

surfaces 

 
2 2( ) ( )

0 0
2 2

1 1l l
uyr uyu dx u dx

l l
   at y = l1    uy  uyr     (14a) 

 
2 2( ) ( )

0 0
2 2

1 1l l
uyr uyv dx v dx

l l
    at y = l1   uy  uyr     (14b) 

 
1 1( ) ( )

0 0
1 1

1 1l l
uxr uxu dy u dy

l l
    at x = l2    ux  uxr     (14c) 

 
1 1( ) ( )

0 0
1 1

1 1l l
uxr uxv dy v dy

l l
    at x = l2    ux  uxr     (14d) 

where (uxr) and (uyr) are two uncracked laminae taken as reference.  From Eqs. (14a) 

and (14b), the number of independent conditions that can be obtained is  2  –   1n N  ; 

on the other hand,  2  –   1n N   conditions are obtained from Eqs. (14c) and (14d).  

Equations (12)-(14) represent the set of 4n-1 boundary conditions, which allows us to 

calculate all the unknowns. Then, the average strains can be calculated as 

 
1 2

1 2

( )

,

1 2

1

4

l l

x x
l l

u dxdy
l l


 

    (15a) 

 
1 2

1 2

( )

,

1 2

1

4

l l

y y
l l

v dxdy
l l


 

    (15b) 

  
1 2

1 2

( ) ( )

, ,

1 2

1

4

l l

xy x y
l l

v u dxdy
l l

 
 

    (15c) 
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To obtain the compliance matrix S of the cracked composite laminate, three unit-load 

cases are considered 

 

( )

1

0

0

a

x

y

xy







   
   

   
     

; 

( )

0

1

0

b

x

y

xy







   
   

   
     

 and 

( )

0

0

1

c

x

y

xy







   
   

   
     

; (16) 

and the deformations obtained for each case are the components of the increased 

compliance matrix S in the oblique coordinate system 

 

( ) ( ) ( )a b c

x x x

y y y

xy xy xy

  

  

  

      
      

       
      
       

S  (17) 

The compliance matrix in the orthogonal coordinate system, S, is obtained using the 

coordinate transformation 

 
1 T S T ST ,  2 2

2 2

cos sin cos sin

cos sin cos sin

cos sin
2cos sin 2cos sin

cos sin

   

   

 
   

 

 
 
 
 
 

 

T  (18) 

The overall elastic properties for the cracked laminate can be written in terms of the 

components of the matrix S as 

 
11

1
XE

S
 , 

22

1
YE

S
 , 12

11

XY

S
v

S
   and 

33

1
XYG

S
  (19) 

A very important characteristic of the procedure presented here is that properties of the 

damaged lamina are function only of the original elastic properties and the crack densities 

1  and 2 . Therefore, there is not need for defining damage evolution functions in terms 

of additional, thus no need to adjust such parameters using additional experimental data.  

 

Fracture Evolution Analysis 

In the previous section, the elastic properties of the damaged laminate were calculated as 

a function of the crack densities. In this section the strain Energy Release Rate (ERR) and 

a damage evolution analysis are formulated based on the results presented above.   

The ERR associated with Mode I and Mode II can be expressed as 

 I
I

U
G

A


 


 (20a) 

 II
II

U
G

A


 


 (20b) 

where UI and UII are the strain energy for Mode I and Mode II, respectively; and A is the 

crack area. The crack area of the  - and  -laminae depend on the crack densities λ1 and 

λ2, respectively. For -cracks, GI and GII can be expressed in terms of the crack density 

2 as 

 2

2

I
I

U
G

A









 
 

 
, (21a) 
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 2

2

II
II

U
G

A









 
 

 
. (21b) 

where A

 is the area of cracks in the  -laminae and IU   and IIU   are the Mode I and 

Mode II strain energies associated with the  -laminae. For -cracks, an expression 

similar to Eq. (21) can be easily obtained in terms of 1. For example, considering -

cracks, the strain energy components IU   and IIU   can be expressed in terms of the 

average (applied) stresses and strains in material coordinates as 

 
 1 1 2 2 2

22

uc
I

V
G

A

   





    



  
 

 
 (22a) 

 
 12 12 2

22

uc
II

V
G

A

 





  



 
 

 
 (22b) 

where Vuc is the volume of the unit cell.  The stresses and strains in the material 

coordinates can be obtained by transformation from orthogonal coordinates 

 

2 2

1

2 2

2

2 2

12

cos sin 2cos sin

sin cos 2cos sin

cos sin cos sin cos sin

X

Y

XY







     

     

       

     
     

     
          

, (23a) 

 

2 2

1

2 2

2

2 2

12

cos sin 2cos sin

sin cos 2cos sin

2 cos sin cos sin cos sin 2

X

Y

XY







     

     

       

     
     

     
          

, (23b) 

where X , Y , XY , X , Y  and XY  are the components of the applied stresses and 

strains in the global (orthogonal) coordinates.  In order to obtain a relation between the 

external loading and the crack density, a failure criterion must be applied. Several failure 

criteria in terms of ERR have been proposed for composite materials.  In this study, the 

criterion proposed by Hahn (Hahn 1983) was chosen.  It can be expressed as 

 (1 ) 1I I II

IC IC IIC

G G G
r r

G G G
    ,      (24) 

 where IC IICr G G  and GIC and GIIC are the critical values of the ERR for Mode I and 

II.   

 The procedure shown in Eqs. (20)-(24) can be used to predict the crack evolution on 

symmetric laminates with otherwise arbitrary LSS under general loading.  The procedure 

is illustrated first for the particular case of balanced laminates and later for unbalanced 

laminates.  For balanced laminates the cracked plies will have opposite angles (   ).  

Additionally, if only axial loading is applied, the applied stress and the average strains 

reduce to 

  0

0

X X X

Y

XY

E 





  
   

   
   
   

, (25a) 
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0

X X

Y XY X

XY

 

  



   
   

    
   
   

. (25b) 

Notice that the stresses and strains in material coordinates (Eq. (23)) for the  and - plies 

will have the same magnitude; therefore, it is expected that the  and - plies develop the 

same crack density (   21 ).  The ERR for mode I and II can be obtained by 

substituting Eqs. (23) and (25) into Eq. (22) 

 4 2 2 4 2 2 2cos 2 sin cos sin 2 sin cos
2

uc X XY
I XY X X

V E v
G v E

A


      

 

    
      

    
 

   (26a) 

    2 2 2 2 22 1 sin cos 2 sin cos
2

uc X XY
II XY X X

V E v
G v E

A


    

 

   
      

. (26b) 

The normalized ERR for Modes I and II can be defined as  

 
2

( , ) I
I

X

G
G  


  (27a) 

 
2

( , ) II
II

X

G
G  


 .   (27b) 

A fracture evolution equation can be obtained replacing Eq. (27) into Eq. (24) as follows 

   21 1I I II
X X

IC IC IIC

G G G
r r

G G G
 

 
    

 
 (28) 

Equation (28) represents the relation between the axial strain ( X ) and the crack density 

on the -laminae.  This equation is valid for symmetric balanced laminates under axial 

loading.  Similar relations can be obtained for other failure criteria. 

 Another case of interest is the axial loading of unbalanced laminates (   ).  In 

this case, the average (applied) stresses and strain can be expressed as 

  0

0

X X X

Y

XY

E 





  
   

   
   
   

, (29a) 

  

_

X X

Y XY X

XY XY X X

 

  

  

  
  

    
   
   

. (29b) 

The ERR for modes I and II for the -laminae is obtained using Eqs. (22), (23) and (29) 

as follows 

  

 

4 2 2 4 2 2

_

2

_2 2 2 2 22

2 2

cos 2cos sin sin cos sin cos sin
2

2cos sin cos sin cos sin

uc X
I XY XY X

XY XXY
X X

V E
G

E
A

         


 
      

 


     



  
     

   
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   (30a) 

 2 2 2 2 2 2

_

2

_2 2 2 2 22

2 2

2cos sin 2cos sin cos sin (cos sin )
2

2cos sin cos sin (cos sin ) .

uc X
II XY XY X

XY XXY
X X

V E
G

E
A

         


 
      

 


    



  
    

   

 

   (30b) 

 

The crack evolution relation for the -lamina is obtained substituting Eq. (30) into Eq. 

(24) as follows 

   
2(1 ) 1I I II

X X

IC IC IIC

G G G
r r

G G G

  

 
 

    
 

 (31) 

The same procedure can be followed in order to obtain 
IG  and 

IIG  and the crack 

evolution of the  -laminae in terms of 1 as follows 

 
2(1 ) 1I I II

X X

IC IC IIC

G G G
r r

G G G

  

 
 

    
 

 (32) 

Equations (31) and (32) describe the crack evolution for unbalanced laminates under 

unidirectional loading.  Notice that Eqs. (31) and (32) must be satisfied simultaneously. 

Multiple N laminae with thickness t and angle  as well as multiple N laminae with 

thickness t and angle  can be handled easily by applying 2N + 2N boundary 

conditions Eq (12) and taking into account that -laminae and -laminae have crack 

densities 1 and 2, respectively.  

 

Results and Discussion 

In this section, comparisons between results obtained using the proposed formulation and 

experimental data reported in the literature are presented.  The mechanical properties of 

the laminate as a function of crack density for several LSS are presented and compared 

with experiments.  Finally, comparisons of damage evolution between analytical 

predictions and experimental results for several LSS are presented. 

 

To validate the prediction of reduced mechanical properties due to the presence of 

obliquely-crossed matrix cracks, a comparison between analytical results from this 

formulation and that presented by Yokozeki and Aoki (2005) is presented in Fig. 2.  For 

this comparison a [45]S IM600/#133 composite was selected. The material properties 

can be found in Table 1.  The change of the Young’s modulus and the Poisson’s ratio was 

obtained as function of the crack density 2 of the  = 45
o
 lamina; the crack density 1 of 

the  = -45
o
 lamina was kept constant and equal to 1 crack/mm just to reproduce exactly 

the particular results presented by Yokozeki and Aoki (2005). A perfect match is 

observed between the two formulations. This was expected since the formulation 

presented here reduces to theirs for [m/n]S laminates. 

 

Varna, et al. (1999) reported a series of experiments for unidirectional loading of 

[0/4/01/2]S E-Glass/Epoxy laminates. The material properties for the plies can be found 
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on Table 1.  A comparison of normalized elastic modulus EX and Poisson’s ratio 
XYv  for 

 = 90, 70 and 55 is presented in Figs. 3-5.  The experimental data for  = 55 reported 

by Varna et al. (1999) displays an offset from expected behavior. The authors of that 

study believed that shear damage was the cause of this offset.  In this study, the data for 

the 55 case (Fig. 5) was shifted by a constant value, so that the normalized values of EX  

and 
XYv  approach one when the crack density approaches zero.  In general, good 

agreement was observed between the experiments and analytical results.  The prediction 

of the properties for  = 70 was acceptable, but not as good as those for 90 and 55.  It 

is observed that the predicted values of 
XYv  for  = 55 increase with crack density as 

expected.  Yokozeki and Aoki (2005) also reported an increase of Poisson’s ratio for 

[]S laminates for values of  lower that 60.  

 

An important characteristic of the formulation presented here is that the prediction is 

function only of the crack density.  Nuismer and Tan (1988) and Yokozeki and Aoki 

(2005) also presented formulations which are function only of the crack density. 

However, those formulations are limited [m,90n]S and [m/n]S LSS, respectively. Thus, 

those are special cases of the formulation presented here for arbitrary LSS.  Varna et al. 

(1999) and Singh and Talreja (2008) presented formulations for the prediction of the 

elastic properties of damaged laminates. Their methodology included finding several 

parameters using numerical and/or experimental results. In addition, their methods 

produced linear predictions for [0/4/01/2]S composites, which may be inappropriate for 

large values of crack densities.  It can be observed from the predictions of the formulation 

presented here that the values of EX and XYv  decrease asymptotically to a given value.  

This behavior is expected since the undamaging laminae eventually take the entire load.  

Linear predictions do not predict this expected behavior. 

 

Comparison for the damage evolution (crack density vs. applied strain) between this 

formulation and experimental data reported by Varna et al. (1999) is presented in Figs. 6-

8.  The values of GIC and GIIC  (175 J/m
2
 and 1500 J/m

2
, respectively) were taken from 

the literature for experimental results for Glass Fiber/Epoxy composites (Rikards et al. 

1998).  A very good prediction of the damage initiation and evolution (crack density vs. 

strain) is obtained for all the cases.  However, the prediction of the onset strain for the 

case of 70 was not as good as those for the other angles.  It is believed that this may be 

caused by numerical inaccuracies which were typically observed at small crack densities 

in laminates with large angles between the oblique coordinate axes.  

 

The damage evolution for balanced laminates can be described by only one value of the 

crack density; which corresponds to the 90 or  laminae.  However, when the laminate 

is not balanced, each lamina may have its own cracking onset strain and crack density 

depending on the lamina angle and the applied load.  An example of this behavior can be 

observed in Fig. 9, where an axial load was applied to a [0/-454/554/01/2]S laminate with 

the materials properties of Varna et al. (1999) (Table 1).  It can be observed that matrix 

cracks appear first in the 55 lamina at a strain of 1.18%. This was expected since the 55
o
 

lamina has the largest tensile stress perpendicular to the fibers for axial loading. The 
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crack density of 55
o
 lamina increases until the -45 lamina starts cracking, at a strain of 

1.64%.  After this point, the crack densities in the two laminae grow at different rates.  

 

Conclusion 

In this study, a model to predict material properties and damage evolution for symmetric 

laminates is presented.  The formulation is valid for laminates with an arbitrary stacking 

sequence and matrix cracks in one or two directions.  An important characteristic of this 

formulation is that changes on the elastic properties are predicted as a function of the 

crack densities only. Another important feature is that the evolution of damage is 

predicted using a strain energy release rate criterion without needing additional 

experimentally-adjusted parameters.  Good comparison between the predictions and 

experiments is observed.   

 

Appendix A 

The covariant transformation of the strain tensor can be expressed in matrix form as 

 

cos sin 0 cos sin 0

cos sin 0 cos sin 0

0 0 1 0 0 1

T

x xy xz X XY XZ

xy y yz XY X YZ

xz yz z XZ YZ X

         

         

     

       
       

       
             

 (A1) 

Equation (A1) can be rewritten using Voigt notation as 

 

2 2

2 2

cos sin 0 0 0 cos sin

cos sin 0 0 0 cos sin

0 0 1 0 0 0

0 0 0 sin cos 0

0 0 0 sin cos 0

sin cos
2cos cos 2sin sin 0 0 0

cos sin

x X

y Y

z Z

yz YZ

xz XZ

xy XY

   
 

   
 

 
 

 
 

 
 

    
 

 
    
    
    
     

    
   
   
   

      








 (A2) 

The contravariant transformation for the stresses can be expressed as 

 

2 2

2 2

cos sin 0 0 0 cos sin

cos sin 0 0 0 cos sin

0 0 1 0 0 0

0 0 0 sin cos 0

0 0 0 sin cos 0

sin cos
2cos cos 2sin sin 0 0 0

cos sin

T

x X

y Y

z Z

yz YZ

xz XZ

xy XY

   
 

   
 

 
 

 
 

 
 

    
 



 
    
   
   
     

    
   
   
   

      










. (A3) 

Equations (A1)-(A3) are applicable to lamina-averaged, local or global stress and strain 

tensors.  By means of Eqs. (A2) and (A3), the in-plane stiffness and compliance matrices 

for a lamina in the oblique coordinate system can be calculated, respectively, as follows 

 1ˆT Q T QT ,   (A4) 

 ˆ TS TST ,   (A5) 
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where Q̂  and Ŝ  are the in-plane stiffness and compliance in the material (orthogonal) 

coordinate system of the undamaged lamina and 

 2 2

2 2

cos sin cos sin

cos sin cos sin

cos sin
2cos sin 2cos sin

cos sin

   

   

 
   

 

 
 
 
 
 

 

T  

In a similar way, the out-of-plane shear stiffness and compliance matrices in the oblique 

coordinate system can be obtained 

 

1

44 45 44 45

45 55 45 55

ˆ ˆcos sin cos sin

ˆ ˆcos sin cos sin

T
Q Q Q Q

Q Q Q Q

   

   

       
       
       

 (A6) 

 
44 45 44 45

45 55 45 55

ˆ ˆcos sin cos sin

ˆ ˆcos sin cos sin

T
S S S S

S S S S

   

   

      
       
       

. (A7) 

Appendix B 

 

The relationship between the out-of-plane shear stresses and the averaged displacements 

can be obtained by calculating a weighted average of in-plane deformation.  Using 

Hooke’s law, the shear strains can be expressed in terms of the shear stresses as 

 

( ) ( ) ( ) ( ) ( )

44 45

( ) ( ) ( ) ( ) ( )

45 55

i i i i i

yz yz xz

i i i i i

xz yz xz

S S

S S

  

  

 

 
. (B1) 

Equation (B1) can be written in terms of displacements, and making use of Eqs. (3-4) the 

following equation is obtained 
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i i

z y

h z h z
S S

h h

v w

              
        

   

    
0

( ) , 1 1, , 1 ( ) , 1 1, , 1

44 45( ) ( )

i i i i i i i i i i i i i ii i
yz yz yz xz xz xzi i

h z h z
S S

h h
              

        
   

 (B2) 

The following weighted average is defined 

   
1

( )

1 i

i

h

ii h
h z dz

h 

  (B3) 

Applying the operator shown in Eq. (B3) on both sides of Eq. (B2), the following 

relationship is obtained 

 

 

 

( ) ( ) ( ) ( )
( ) ( ) , 1 ( ) 1, ( ) , 1 ( ) 1,

1 45 45 55 55

( ) ( ) ( ) ( )
( ) ( ) , 1 ( ) 1, ( ) , 1 ( ) 1,

1 44 44 45 45

6 3 6 3

6 3 6 3

i i i i
i i i i i i i i i i i i i

i yz yz xz xz

i i i i
i i i i i i i i i i i i i

i yz yz xz xz

h h h h
u h u S S S S

h h h h
v h v S S S S

   

   

   



   



     

     

 (B4) 

where u(hi-1) and v(hi-1) are the in-plane displacements evaluated at z = hi-1. Following a 

similar procedure for ply (i-1), but using (z – hi-2) as a weight, the following relation is 

obtained 
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 

 

( 1) ( 1) ( 1) ( 1)
( 1) ( 1) 2, 2 ( 1) 1, ( 1) 2, 1 ( 1) 1,

1 45 45 55 55

( 1) ( 1) ( 1)
( 1) ( 1) 2, 1 ( 1) 1, ( 1) 2, 1

1 44 44 45

6 3 6 3

6 3 6

i i i i
i i i i i i i i i i i i i

i yz yz xz xz

i i i
i i i i i i i i i i

i yz yz xz

h h h h
u h u S S S S

h h h
v h v S S S

   

  

   
          



  
        



    

   
( 1)

( 1) 1,

45
3

i
i i i

xz

h
S 


 

 

  (B5) 

Adding Eqs (B4) and (B5) and presenting the result in a matrix form we obtain 
( 1) ( 1) ( )2, 1 1,( ) ( 1) ( 1) ( 1) ( )

45 55 45 55 45 55

2, 1 1,( ) ( 1)
44 45 44 45 44 45

( )
( )

45 55

44 45

6 3 3

6

i i ii i i ii i i i i
yz yz

i i i ii i

xz xz

i
i

S S S S S Su u h h h

S S S S S Sv v

S Sh

S S

 

 



     

  

           
                          

 
 
 

, 1

, 1

i i

yz

i i

xz





 
 
 

  (B6) 
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Tables 

 

 

 

Table 1. Material properties for the laminates considered in study. 

 

 IM600/#133 [Yokozeki 

and Aoki 2005] 

E-Glass/Epoxy [Varna, 

et al. 1999] 

EL (GPa) 147 44.7 

ET (GPa) 8.31 12.7 

vLT 0.352 0.297 

vTT 0.45* 0.41* 

GLT (GPa) 4.7 5.8 

Ply thickness (mm) 0.14 0.144 

GIC (J/m
2
) [Rikards et al. 1998] 175 175 

GIIC (J/m
2
) [Rikards et al. 1998] 1500 1500 

* Assumed value. 
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Figures 

 

 

 

 

 

 
Figure 1. Orthogonal and oblique coordinate systems and geometry of the Repetitive 

Unit Cell. 
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a)  

b)  

Figure 2. Comparison between analytic results from present formulation and those 

presented by (Yokozeki and Aoki 2005): a) Normalized Young’s Modulus vs. λ, b) 

Laminate Poisson’s Ratio vs. λ.
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a)  

 

b)  

  

 

Figure 3. Reduced properties for the [0/908/01/2]s composite, a) Nomarlized Young’s 

modulus ( /X XE E ), b) Laminate Poisson’s Ratio ( XYv ). 
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a)  

 

b)  

 

Figure 4. Reduced properties for the [0/704/01/2]s composite, a) Nomarlized Young’s 

modulus ( /X XE E ), b) Laminate Poisson’s Ratio ( XYv ). 
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a)  

 

b)  

 

Figure 5. Reduced properties for the [0/554/01/2]s composite, a) Nomarlized Young’s 

modulus ( /X XE E ), b) Laminate Poisson’s Ratio ( XYv ). 
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Figure 6. Comparison of the matrix crack evolution between analytical results and those 

reported by (Varna, et al. 1999).  
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Figure 7. Comparison of the matrix crack evolution between analytical results and those 

reported by (Varna, et al. 1999).   

 

 
 

Figure 8. Comparison of the matrix crack evolution between analytical results and those 

reported by (Varna, et al. 1999).   
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Figure 9.  Damage evolution of a [0/-454/554/01/2]s laminate under axial loading.
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