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ne elastic stability of shells or shell-like structures
under two independent load parameters is considered.
One of the loads is associated to a limit point form of
buckling,. _whereas the second is a bifurcation. A
simple one degree of freedom mechanical system is
first investigated, for which an analytical solution is
possible. Next, a cylindrical shell under the combined
action of axial load and localised lateral pressure is
studied~ via a non linear, two-dimensional, finite ele­
ment discretization. "It is shown that both problems
dmplay the same general behaviour, with a stability
boundary in the load space which is convex towards
the -region of stability. The results show the need of
performing a full Don-linear analysis to evaluate the
stability boundary for the class of interaction prob­
lems considered.

Esg ']', d...

INTRODUCfION

Load interactions arise in the buckling of structures
when two or more loads are increased by independent
load parameters. For such problems, it is of great impor­
tance to evaluate under what combination of load
parameters the system will become unstable. A general
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theoretical Cramework on the buckling under combined
loading was presented by Huseyin in 19701 ..2 using an
assymptotic Cormulation in terms of generalised.coordi­
nantes. In a multidimensional load- space, the set of
points associated to an initial loss ofstability,. is cali~d the
stabi1jty boundary. But not only the values of critical
load parameters are important: also the curvature of the
stability boundary is ofgreat interesting design. The early
studies of Papkovich3 were restricted to· bifurcation
buckling, and showed that the stability boundary cannot
have convexity towards the region ofstability in the load
space. The practical implications of such statement are /
that if.u.fwo points of the stability boundary are known an')
(such as the critical points under independent loads), a
linear interpolation yields a lower bound to the buckling
problem under combined loads. Cylindrical shells under
axial load and uniform lateral pressure are an example of
such behaviour4

.'.

But for structural systems in which the buckling beha­
viour is not completely defined by bifurcation, the con­
clusions of Papkovich are no longer valid. For a one
degree of freedom and two load parameters, Hueyin2

showed that in systems governed by a non-linear beha­
viour, the stability boundary should have convexity
towards the region of stability. Thus, in non linear
buckling problems, for which at least one of the loads
acting independently is associate to a limit point, a linear
stability boundary may constitute an unsafe estimate of
buckling load.

In the present work, attention is focused on the non­
linear behaviour of elastic cylindrical shells, under two
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-. . independent loading parameters, one of which is asso­
ciated to a limit point form of buckling. First, a simple
one degree of freedom system with the above characteris­
tics is analysed in order to consider the main features of
the behaviour from the mechanics point of view. Next,
the studies are extended to consider a cylindrical shell
under axial load and local lateral pressure, which
displays a very similar behaviour to the introductory
mechanical model. The communication attempts to high­
light the type of Finite Element analysis that would
be necessary to compute critical loads and stability
boun~ary in this case.

BUCKLING OF A SIMPLE MECHANICAL
MODEL WITH TWO LOAD PARAMETERS

stability coefficient ~c:d~ces in this case to a2 V/oQ 2 1£
evaluated on the equdlbnum path E. Critical equilibrium
is associated to the condition o2v/aQ2lE = 0 (see Refs. 6
and 7).

.For both loads acting on the system, equilibrium is
given by .

P1=~KL(l-9fQ) _!P2Q-l (3)

'Notice that for PI = 0, Equation (3) reduce~ to

1 ( 9v'J )Pz =-KL Q__ Q2
2 8.

which is a non-linear unstiffening behaviour, and exhibits
a limit point at

Fig. 2. Stability boundary for the model of Fig. 1
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with a bifurcation load at

. 1
Pi = r;KL

9",3

For P2 = 0, on the other hand, there is a trivial funda­
mental path Q= 0, and.a secondary ·asymmetric path
given by

Under both load parameters, a critical point is reached at
the following condition:

;~ =9~(1-4 ;iY (8)

Figure 2 shows the.interaction diagram obtained from
the load combination at buckling. It may be seen that for
this non-linear problem, the stability boundary is convex
towards the region of stability. This result is opposed to
what would be expected from the theorems of convexity
of the fundamental characteristic surface in Ref.. 3. Notice
that a linearised stability boundary, plotted in Fig. 2,
would predict unsafe buckling loads, with an error which
increases as buckling is dominated by the transverse load
p2 (associated to a limit-point form ~f buckling).

o. -t--.....- ......--.--.....-....--........__-

0.2

0.26

Fig. 1. Geometry, loading and deflections for the one
degree offreedom model considered

In order to illustrate the basic mechanics of the interac­
tion problem, the simple conservative one degree-of­
freedom system shown in Fig. 1 is investigated in this
section under the combined action of two independent
loads. A distinctive feature of the model is that each load,
acting independently on the system, is associated to an
unstable postbuckling behaviour: the axial load P1 leads
to bifurcation buckling; whereas Pz is associated to a non
linear behaviour with a limit point. It will be seen in the
next section that a similar behaviour is displayed by the'
more complex finite element model of a cylindrical shell.

The tot81 potential energy of the system may be written
·in the form

v = KAz - P2A2 - 2P1A1

With reference to Fig. 1., it may be shown that V results in
terms of a single displacement parameter Q= I1JL as

. -V(Q. Pl' P2) = ~ KL2(Q2 - 3fQ3) - P1LQ2

- PzLQ (2)

I where terms containing powers of Q higher than 3 have
been ·neglected in the approximation.

Equilibrium of the system is obtained from the condi­
tion of stationary potential energy, av/aQ = 0, while t~e
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Finite element model
In order to investigate the elastic non-linear behaviour

of a cylindrical shell under axial load and local· lateral
pressure, as defined in the previous section, a two­
dimensional shell finite element has been used The shell ._
is modelled using the 16-node element ofFig 4, which is a
degenerated solid element with reduced integration and
48 degrees of. freedom. Only geometric non-linearity has
been considered, and the constitutive material is assumed ._­
to be linearly elastic. The element is based on a Total
Lagrangean formulation, and is fully described in Ref. 12.
The non-linear equations have been solved using a
continuation method13•

The finite element discretization extends over a quarter
of the shel~with conditions of symmetry being applied at
x = 1/2, 8 = 0 and 8 = 1t. The boundary conditions at
the ends of the shell were assumed as simply supported,
with vertical displacements allowed (usually termed 553
in the literature). The mesh consists of 4 elements in the
longitudinal direction and 24 elements in the circumfer­
ential direction, so that buckling modes with 6 circumfer­
ential waves and a half longitudinal wave could be
represented. To check the accuracy of the resul~ com­
parisons have been made with an analytical linear dy­
namic response, and the results were in complete
agreement.

Fig. 4. SL'"Cteen node finite element used in tile C0I11pU(a­

.tions

Numerical results
A particular steel shell is studied in this section to

illustrate some of the main features of the buckling
behaviour under combined axial load an local lateral
pressure. The shell dimensions were taken from Ret 11 as

and p = 0

for () > C(

where the pressure extends over a central angle 2~

indicated in Fig. 3, with a maximum pressure p.

case the associated lateral pressure is maximum. Follow­
ing Ref. 11, the pressure distribution is given by

_. (1tX) (1t8)p(x, 8) = P sin T cos2 2(%

for 0 < () < cc;

f

h

N

N

Fig. 3. Dimensions and loading consideredfor the cylindri­
cal shell. r = 5000 mm,· h = 25 mm; 1=10000 mm,o
E = 2.05 x lOSN/mnr,. v = 0.3; ex = 1[/20

BUCKLING OF CYLINDRICAL SHELLS
UNDER COMBINED AXIAL LOAD AND
LOCAL LATERAL PRESSURE

In most previous· studies on the buckling behaviour of
cylindrical shells unet combined axial load and lateral
pressure, the latter is assumed as uniformly distributed in
the circumferential direction. In fact, only in a few cases
has the influence or local pressures been considered· in a
buckling analysiss.9 • But in many engineering applica­
tionsof cylindrical shells, it may be necessary to evaluate
stability under axial load and local lateral pressure. This.
occurs, for example,. in the design of shells· under wind
and. gravity load; or in the design of the legs in .semi­
submersible and tensioned leg off-shore platforms, which
are subject to permanent uniform axial load as well as.to
more localised lateral pressure exerted by waves lO

•

Fig 3 shows the geometry and loading of the shell
considered. The lateral pressure has been obtained.from.
a ·study on the slamming of a breaking wave ona
cylindrical shell, as modelled in Ref. 11. In the present
work it has not been attempted. to solve the non-linear
.dynamic problem, but a static non-linear analysis is
carried out at the initial time of wave impact, in which
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Next, the results for several load combinations have
been plotted in Fig' 7 to show the interaction between
axial load and local pressure. The solid line indicates the
limit load values and it may be seen that the shell can
sustain on a small area a lateral action of higher pressure
intensity than the uniform pressure that buckles the shell.

As a reference value, bifurcation buckling loads under
a non-axisymmetric fundamental state have been com­
puted using a finite element code -described in Ref. 14.
The r~sults indicate that as the lateral pressure increases,
the dIfference between limit and bifurcation points be­
come larger. The reason for this is that the bifurcation
load is calculated from a linear fundamental path, while
the results of Fig. 6a show that the load-displacement
path before buckling involves large displacements. Thus
a bifurcation analysis leads to meaningless results in th~
present case.

Notice that the behaviour of the cylindrical. shell under .
combined loading is similar to the simple mechanical
model discussed above, with the loads N, p being asso­
ciated to Pl' Pz.

O---r---,..-.,-..,.........-..,.-.--...-_-
-0.7 11.1 33.7 .923 25.89

transverse "displacement tmm)

Fig. 6. Buckling under local' lateral -dominated pressure.
(a) Load-displacement path at x = 1/2, 0 = 0 (b) Out of
plane displacement
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r = 5,000 mm; h = 25 mm; and 1= 10,000 mm; leading
to- slenderness ratios r/h = 200; l/r = 2 and Bartdor(
parameter Z = 76.

First, the buckling behaviour under axial dominated
load will be investigated, in which case the shell is loaded
by a local pressure of constant maximum value p=
0.0284N/mm2 and the axial load is increased. Fig Sa
shows the load displacement path obtained from the
~nite element non-linear analysis, and in which the axial
load N has been normalised with respect to the classical
critical value

o

0.2

o 5 10 15 20 25 30
axial displacement (m m)

Fig. 5. Buckling under axial dominated load. (a) Load­
displacement path at x = 0, 9 = 0; (b) Out of plane
displacement at several load levels
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Fig. 7. Stability boundary for the cylindrical shell under
axial/oad and local lateral pressure
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Pd = (rlh)2.511r(1 _ y2)O.75 (11)

A maximum load is achieved at NINel = 0.828; as
expected, the load decreases sharply in the post-buckling
path under controlled displacements. A minimum value
is registered at N /N cl = 0.118. The buckling mode is
shown in. Fig. Sb at three different load levels. Even for
this relatively small lateral pressure, the buckling mode is
severely affected by the pressure, with the largest displa­
cements occuring in the area of maximum lateral pres­
sure.

Second, the shell behaviour under a constant axiai
load NINcl = 0.15 and increasing local pressure has been
studied. The load-deflection path is shown in Fig 6~ in
which the out-of-plane displacement is measured at
x = 1/2 and (J = O. The response is now highly non­
linear, with a maximum pressure P/Pd = 1.5 calculated
for a displacement of 3.7 times the thickness of the shell;
and a minimum pressure P/Pd = 1.10 after the limit point.
The mode of deformation of the shell is represented in
Fig.6b.
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BUCKLING OF CYLINDRICAL SHELLS
UNDER COMBINED AXIAL LOAD AND
LOCAL LATERAL PRESSURE

In most previous· studies on the buckling behaviour of
cylindrical shells unet combined axial load and lateral
pressure, the latter is assumed as uniformly distributed in
the circumferential direction. In fact, only in a few cases
has the influence of local pressures been considered· in a
buckling analysis8•9 • But in many engineering applica­
tions of cylindrical shells~ it rnay be necessary to evaluate
stability under axial load and local lateral pressure. This
occurs, for example, in the design of shells· under wind
and gravity load; or in the design of the legs in semi­
submersible and tensioned leg off-shore platforms, which
are subject to permanent uniform axial load as well as.to
more localised lateral.pressure exerted by.waves1

o.
Fig 3 shows the geometry and loading of the shell

considered. The lateral pressure has been obtainedfrom •
a study on the slamming of a breaking wave ona
cylindrical shell, as modelled in Ref. 11. In the present
work· it has not been attempted. to solve the non-linear
dynamic proble~ but a static non-linear analysis is
carried out at the initial time of wave impac~ in which

Fig. 4. Sixteen node finite element used in tile C0l11puta-
tions .

case the associated lateral pressure is maximum. Follow­
ing Ref. 11, the pressure distribution is given by

_. ,(XX) (TC8)p(x, 8) = P sin T cos2 2cx

for 0 < 8 < ex;

.,r_r~.*-

N

(9b).

Numerical results
A particular steel shell is studied in this section to

illustrate some of the main features of the buckling
behaviour under combined axial load an local lateral
pressure. The shell dimensions were taken from Ret 11 as

Finite element model
In order to investigate the elastic non-linear behaviour

of a cylindrical shell under axial load and local lateral
pressure, as defined in the previous section, a two­
dimensional shell finite element has been used. The shell
is modelled using the 16-node element of Fig 4~ which is a
degenerated solid element with reduced integration and
48 degrees of.freedom. Only geometric non-linearity has
been considered, and the constitutive material is assumed .­
to be linearly. elastic. The element is based on a Total
Lagrangean formulation, and is fully described·in Ref. 12.
The non-linear equations have been solved using a
continuation method13•

The finite element discretization extends over a quarter
of the shel~with conditions of symmetry being applied at
x = 1/2, 8 = 0 and 8·= 1t. The boundary conditions at
the ends of the shell were assumed as simply supported,
with vertical displacements allowed (usually termed SS3
in the literature). The mesh consists of 4 elements in the
longitudinal direction and 24 elements in the circumfer­
ential direction, so that buckling modes with 6 circumfer­
ential waves and a half longitudinal wave could be
represented. To check the accuracy of the resul~ com­
parisons have been made· with an analytical linear dy­
namic response, and the results were in complete
agreement.

andp=O

for (J > cx

where the pressure extends over a central angle 2~

indicated in Fig. 3, with a maximum pressure p.
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Fig. 3. Dimensions and loading consideredfor the cylindri­
cal shell. r = 5000 mm; h = 25 mm; 1=10000 mm;
E = 2.05 x lOSN/mnr; v = 0.3 .. (l = 1[/20
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