
(

AIAA·91-,045-CP

MICROMBCHANICAL MODELS FOR PULTRUDED COMPOSITE BEAMS

E. J. Barberol and S. S. Sonti2

Constructed Facilities Center
Department of Mechanical and Aerospace Engineering

West Virginia University
Morgantown, WV 26506-6101

Absttaet

Pultrusion is a low cost, mass production processing
technique of fiber reinforced composite m.aterials.
Pultrusion produces standard structural sectIons (1­
beams, box-beams, cellular sections, etc.). Variability and
defects of pultruded materials need to be considered in
the experimental methods used to validate
micromechanical models and to obtain material property
data. In this paper we investigate existing
micromechanical models and their applicability to
pultruded materials. We develop experimental data on
tension and shear to correlate with micromechanical
predictions. We select and adapt experimental
procedures useful for this particular cla~s of materi~ls.

We present correlations between the mIcromechanIcal
analysis and experimental data for pultruded structural
shape-so

1. Introduction

Composite materials have many advantages over
conventional materials. Light weight, corrosion
resistance, reduced part count, are only a few examples.
Most prominent is the chance of creating the best
material for each particular application. However, use of
composit~s in structural applications is limited by the
high cost of the material and processing of ?on
standardized parts. In this paper we look at pultrusIon,
which is a low cost, mass production processing
technique of standard structural sections. Recent
advances in pultrusion technology make possible cost-
competitive production of new materials using Epoxies, ~

Graphite, Kevlar, and S-Glass fibers. Current standard
structural shapes use less expensive E-Glass and
Polyester or Vinylester resins. They are marketed for
infrastructural applications that require corrosion
resistance and/or to avoid electromagnetic interference.
Unlike composites produced with highly controlled
processing techniques, pultruded materials have defects
proper of a mass production operation. Therefore, we
need to address the variability of the material both in the
formulation of micromechanical models and in the
experimental methods used to validate those models and
to obtain material property data.

In order to realize the full potential of composites we
need to design the material concurrently with the
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structure. It is thus necessary to count with analytical
models to explore a broad spectrum of resins, fiber
systems and fiber orientations. The structural
characteristics of interest are stiffness1, strength2 ,

buckling resistance3 ,etc. These structural properties
depend on the material system (composite) and the
shape of the cross-section of the members. Predicted
properties allow us to address the optimization 'of the
material to improve the buckling, crippling, and post­
buckling behavior which ultimately control the ultimate
bending strength.

The strength-to-stiffness ratio of composites is much
larger than for aluminum or steel. Therefore, deflections
are of major concern to the structural designer, including
axial stiffness, bending stiffness and shear stiffness (shear
deformation plays a significant role in the transverse
deflections of composite beams). Although we can
measure stiffness for existing pultruded members,
prediction of properties allows us to optimize the
material to make it competitive with conventional
materials. Using lamination theory we can predict
stiffness properties from the product description used for
manufacturing. This includes the material properties of
the constituents (fiber and matrix), the orientation and
volume fraction of the fibers at different locations on the
section (web or flanges), and the shape of the cross­
section. Analytical modeIs for stiffness, buckling, and
strength depend on accurate micromechanical
predictions of the material properties.

Micro-mechanics allows us to relate changes in the
material systems to changes in the material properties~In
this paper we investigate existing microme~hanIcal

models and their applicability to pultruded materIals. We
develop experimental data .on tensi~n. and shear to
correlate with micromechanIcal predIctIons. We sele~t

and adapt experimental procedures useful for .thIS
particular class of materials. We p.resent corr~lat1ons

between the micromechanical analySIS and experImental
data for pultruded structural shapes.

Other studies" presented experimental data o~tained

directly from full-size tests of currently produced
structural shapes. They addressed the deter~ina~ion of
beam bending stiffness including the contnbutlon of
shear deformations. These can be input into Timoshenko
beam theory for computation of deflections. In this work
we look at the validation of micromechanical models that
allow to predict those properties among other materi~l

properties needed from the description used .In
manufacturing, thus allowing us to optimize the matenal
for specific applications. The manufactur~r'sdescription
include a detailed profile of the propertIes through the
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where tc is the thickness of the layer, p is the density of .
the fibers and W is the weight per unit area of the OC
mat.

cross section, which is also useful for stress
computations. Also, based on micro-mechanics, we
predict plate stiffness of the webs and flanges, necessary
for crippling analysis. Micro-mechanics allow us to avoid
costly experimentation to characterize a continuously
growing list of standard shapes (more than 300 different
sections from one manufacturer alone). Finally, micro­
mechanical models allow us to predict the behavior of
future material combinations and thus to optimize their
performance by proper design.

V1C- (2)

2. Modelling of Pultruded Structural Shapes

Fiber reinforced composite beams and columns are
inhomogeneous for two reasons. First, the fiber
reinforced composite material is inhomogeneous and
anisotropic due to the presence of the fibers (glass,
kevlar, graphite). Next, different portions of the cross­
section are built with different orientation of the fibers,
different fiber volume fractions, different fiber systems,
etc. This is true not only from 'a point to point basis (e.g.
roving, nexus, continuous strand layers) but also at a
larger scale the flanges and webs are usually built with

different fiber combinations.

Although pultruded beams are not manufactured by
lamination, they do contain different material
c_ombinations through the thickness, thus justifying the
use of lamination theory. Using micro-mechanics, each
layer is modelled as an homogeneous equivalent material
that macroscopically behaves similarly to the fibrous
composite. With the results from micro-mechanics,
lamination theory is used to model an entire flange or
web as a yet equivalent homogeneous material. Finally,
flanges and webs are assembled into a structural shape
obtaining properties useful for structural design5•6•

3. Micromechanical Models For Pultruded Composite
Beams

Considering transverse isotropy on each layer7 we need
four material properties per layer. Using micro­
mechanics we determine the material properties for each
lamina (Eh E2, V12, G12) from the material properties of
fiber (Er, vr) and matrix (Em, Vm).

3.1. Determination of Fiber Volume Fraction

The fiber volume fraction Vr is the ratio of the volume
of fiber to the total volume of the final product. We
compute Vr as the quotient of the area of fibers in the
cross-section to the total area of the cross-section. The
area A of fibers in the cross section depends of the
number of roving n and their yield y [number of yards
(0.9144 m) of roving weighing one pound (0.454 Kg)] as

A==l1/ (2 . 016 . y. p ) (1)

with A in m~ p in Kg/m3, and .Y in yards/lb. For the
continuous strand mat (DC), the fiber volume fraction
can be computed as
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3.2 Tensile Modulus.

In the elasticity solutions with contiguity', we assume that
either a) fibers are contiguous (i.e., fibers touch each
other) or b) fibers are isolated (i.e., fibers are completely
separated by resin). If C denotes the degree of
contiguity, then C=O corresponds to isolated fibers and
C=1 corresponds to perfect contiguity. For low fiber
volume fraction pultruded composites we use C=O. For
the material under study we use: Er = 72.393 GPa, Em =
3.445 GPa8 and' Vr = 0.22, Vm = 0.35. Due to the high
tension that pultrusion exerts on the fibers we adopt a
fiber misalignment factor K=l. Using Eq. 3.69, 3.66, and
3.67 from' we obtain the material properties of each
lamina (Eb ~, and V12).

As an example consider a E-Glass-Vinylester pultruded
ma-terial with Vr=O.25. Using the elasticity approach we
obtain: E1 = 20.632 GPa, ~ = 4.860 GPa, V,2 = 0.313.
Using the mechanics of materials approach (Sect. 3.2,')
we obtain: E1 = 20.632 GPa, ~ = 4.433 GPa, and V1Z =
0.318. The prediction of E1 form both methods coincide
because of the value of the fiber misalignment factor.
These predictions correlate very well with experimental
data.

Pultrusion produces a laminate with all the lamina
perfectly bonded together. Therefore, we can only test a
laminate. The laminated structure of pultruded materials
is an valid idealization as we demonstrate in Sect. 3. In
order to compare micromechanical predictions with
experimental data we need to determine laminate
properties. We accomplish this by using lamination
theory. We compute the stiffness matrix for each lamina
(Eq. 2.61,') and rotate it to structural axis (Table 3.2,9).

Then we compute the extensional stiffness matrix (Eq.
2.41') and invert it to obtain the compliance matrix.
Finally we obtain the equivalent material properties for
a laminate (Eq. 4.189) that we compare to experimental
data in the following section.

3.2.1. Experimental results. We performed tensile tests
on coupons cut from 8x8xO.375" (20.32x20.32xO.95 cm)
I-beams. We cut various sizes from the webs and flanges
of an I-beam (Fig. 1) and we measured longitudinal and
transverse strains to compute longitudinal (Ex) and
transverse (:By) tensile moduli.

We performed tensile tests on 45.72x5.08 cm specimen
with aluminum tabs on the specimen ends (12.7Ox5.08
em) to prevent the grips from damaging the material



during the test. We recorded strains in the longitudinal
(fiber) direction, transverse direction and 45°. We tested
five specimen, four from the flanges (see Fig. 1) and one
from the center of the web. By linear regression on the
linear portion of the load-strain curve we obtained the
results reported in Table 1.

We performed tensile tests on smaller specimens
(20.32x2.54 cm) from the same I-beam on an Instron
universal testing machine hooked to a Data Acquisition
system. We tested twelve specimen, eight from the
flanges and four from the webs . There is noticeable
scatter in the values of the elastic moduli. This is due to
variability of the material from point to point in the
cross-section. Specimen from the intersection of the
flanges and the web have lower modulus. This in turn is
due to the variability of the fiber volume fraction in that
region. Table 2 summarizes the results.

the cross section of the beam seems to be a good
estimate as suggested by the torsion results that we
describe next. The values for the shear modulus using
this method are higher than the micro-mechanics
prediction, which is not accurate in this case. The values
of the shear modulus obtained by linear regression on
the load-strain curves from a two-element strain gage are
given in Table 4.

3.3.2. Torsion test. The Iosipescu test results show a
large scatter due to the variability of the pultruded
material from point to point in the cross-section of the

structural shape. Therefore, we used a torsion testl
6,17 that

allows us to test larger samples. For this test we assume
transverse isotropy of the laminate18

• The shear modular
can be computed from Lekhnitskii torsion solution for
orthotropic rectangular bars.

We obtained five transverse specimen (8.89x2.54 em)
from the same beam to determine the transverse tensile
modulus,four from the flanges and one from the web.
Table 3 summarizes the results.

T
e

(3)

The elasticity approach to micro-mechanics seems to
provide the best predictions for pultruded composite
materials.

3.3. Shear Modulus.

We use the elasticity solutions with contiguity for the
determination of the shear modulus. Using Eq. 3.68 in
Ref. 7 we obtain G12 = 1.985 GPa. The predicted value
does not correlate well with experimental data.
Therefqre, we use stress partition parameter9

• We
obtain the stress partition parameter using experimental
data for currently produced pultruded material and
assume that remains constant while varying the fiber
volume and resin properties during material optimization
studies.

Iosipescu Shear test. To determine the shear modulus we
used the Iosipescu Shear Test Method, originally
developed for isotropic materials10 and used for
pultruded composites by Bankll

• Researchers at
Wyoming University redesigned the fixture to be used
for composite materials l 2.13.14,15. We built a similar fixture
at West Virginia University. We obtained the specimen
from the same wide-flange beams used through this
study. The specimen is 7.62 cm long and 1.91 em wide
with a 9oo notch at the center of the specimen milled
with a precision grinding and cutting machine. The
notch root radius is 0.13 em and the notch depth is equal
to 20% of the specimen width. We use an Instron
universal testing machine in compression mode and
record the results using a Data Acquisition system. Fig.
2 represents a typical stress-strain curve where the
nonlinearity of the shear modular is apparent. We
tested nine specimen, six from the flanges and three
from the web. Again, there was noticeable scatter due to
the variability of the material. The Iosipescu test gives
the shear modulus of a small region of the material. An
average of the values obtained at several locations on
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with d t = cross-sectional area, L = gage length (L <
La), T = torque, e = twist angle (Fig. 3), where

(4)

and assuming G12 = G13 or performing tests for two
different cross sections. We tested four samples
(43.18x2.54 em) form the four flanges of the same 1­
beam and one sample from the web (Fig. 1). We
computed the moment from the displacement of the
reacting arm, displacement that we measured by a
LVDT hooked to a data acquisition system. We
measured the twisting angle on a gage length of 27.94 cm
as the difference between two LVDT hooked to the
DAS. The loading rate was less that 3° per minute both
in loading and unloading. To asses the effect of possible
misalignment we applied both clockwise and counter
clockwise twisting. Fig. 4 represents a typical torque us
angle of twist curve. The apparent histeretic effect is not
due to the material but to the statis friction of the hubs
on the torsion machine. The curves are linear due to
the low strain level experienced in the material during
test. Table 5 summarizes the results.

We conclude that the torsion test results are
approximately the average of the Iosipescu results. This
fact confirms that the variability of the material is
responsible for the scatter in the Iosipescu results. The
torsion test averages the values of the shear moduli over
a large area (27.94x2.54 em). Therefore we recommend
the use of the torsion test to characterize the structural
behavior of the pultruded beams. Furthermore, the
Iosipescu method requires the use of costly and

cumbersome strain while the torsion method uses
simpler LVDT. However, the Iosipescu method provides
the shear strength, while the torsion method does not.
We are developing a torsion failure criteria that will



allow us to use the torsion method for determination of
shear strength.

3.4. Compression properties

GurdaP9 developed a compression test fixture at
Virginia Polytechnic Institute and State University. We
built a similar one, adapted for larger samples required
for this work. The advantages of this fixture over the
existing fixtures are 1) ease of specimen preparation, 2)
ease of specimen alignment, 3) longer test section, 4)
reduction of stress concentrations, 5) ease of specimen
stress analysis, and 6) prevention of buckling of the
coupon at higher loads. Results of compression tests will
be presented and compared to full size compression tests
currently under way.

4. Conclusions

The elasticity approach to micro-mechanics seems to
provide the best predictions for pultruded composite
materials. Longitudinal and transverse moduli and
Poisson ratio predictions correlate very well with
experimental data. Shear modulus was under-predicted.
The stress partition parameter is needed to obtain
reallistic predictions of the shear modulus to be used in
material optimization. Due to the variability of the
material, large samples give results that are more
representative of the structural behavior. This is specially
true for shear, where the torsion test gives more
consistent results than the Iosipescu test.
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Table 1: Longitudinal tension test results from large
samples.

Location Ex V12

(GPa)

Flange 1 18.615 0.29

Flange 2 19.994 0.29

Flange 3 22.062 0.35

Flange 4 19.994 0.23

Web 1 15.168 0.19

.Table 2: Longitudinal tension test results.

Location Ex V12

(GPa)

Flange 5 22.752 0.279

Flange 6 20.408 0.278

Flange 7 18.753 0.300

Flange 8 12.824 0.244

- Flange 9 15.512 0.291

Flange 10 27.578 0.230

Flange 11 16.891 0.288

Flange 12 18.201 0.299

Web 2 15.650 0.280

Web 3 15.444 0.277

Web 4 16.340 *3

Web 5 16.478 0.280

3 not recorded
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Table 3: Transverse tension test results.

Location Ey V21

(GPa)

Flange 13 5.791 0.26

Flange 14 6.067 0.13

Flange 15 4.412 0.14

Flange 16 5.929 0.23

Web 6 4.136 0.14

Table 4: Iosipescu test results.

Location Gxy
(GPa)

Flange 17 4.964

Flange 18 4.329

Flange 19 2.861

Flange 20 2.502

Flange 21 2.357

Flange 22 3.923

Web 7 4.626

Web 8 4.412

Web 9 3.481

Table 5: Torsion test results

Location Twisting Loading G Unloading
(GPa) (GPa)

Flange 1 Clockwise 3.658 3.618

Flange 1 Counterclockwise 3.809 3.831

Flange 2 Clockwise 3.749 3.890

Flange 2 Counterclockwise 3.963 4.059

Flange 3 Clockwise 3.854 3.855

Flange 3 Counterclockwise 3.959 4.095

Flange 4 Clockwise 3.518 3.517

Flange 4 Counterclockwise 3.712 3.736

Web 1 Clockwise 3.810 3.826

Web 1 Counterclockwise 3.945 4.018
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