Introduction to Composite Materials Design—Second Edition Materials and Manufacturing

Ever J. Barbero

http://barbero.cadec-online.com/icmd

(c) 2013-2018 Ever J. Barbero

Educational, noncommercial use only

Outline

Materials

Fiber Materials

Natural fibers Reinforcement configuration Textiles

Matrix Materials

2 Manufacturing processes

Hand lay-up Prepreg Vacuum bagging Autoclave Compression molding RTM VARTM Pultrusion Filament winding Advantages/Disadvantages

(c) 2013-2018 Ever J. Barbero

Educational, noncommercial use only

Definition

A ${\tt composite}$ is a combination of two or more materials that:

- remain microscopically identifiable
- attain properties that are superior to those of any of the individual components

The simplest composite consists of a matrix reinforced by a reinforcement.

Materials

Fiber materials

- 2.2.1. Glass. Inexpensive.
- 2.2.2. Silica and Quartz (*S*_{*i*}*O*₂). 900–1050^{*o*}*C*
- 2.2.3. Carbon. Inert. Broad variety of modulus *E* and strength *F_f*. LM, MM, HM, UHM
- 2.2.4. Carbon Nanotubes and Graphene.
- 2.2.5. Organic:
 - Kevlar, Tecnora, Twaron (Aramid based)
 - Zylon (PBO based)
 - Spectra (Polyethylene based)
 - Vectran (Polyester based)
- 2.2.6. Boron. High modulus.
- 2.2.7. Ceramic. High temperature.
- 2.2.8. Basalt. Inexpensive.
- 2.2.9. Metallic.

• Natural Fibers. Moisture. Adhesion to matrix. (c) 2013–2018 Ever J. Barbero Educational, noncommercial use only

Fiber materials : Natural fibers

Natural Fibers.

- Bamboo
- Kenaf
- Sisal
- Yute
- etc.

Research topics:

- Moisture
- Adhesion to matrix
- Natural matrices

Reinforcement configuration

Long fibers

- Unidirectional (fibers)
- Bidirectional (textiles)
- Random (fibers)
- Discontinuous fibers
 - Random (chopped)
 - Oriented (OSB)
- Particles and Whiskers
 - Random
 - Oriented

Textiles

- 2.4.2. One dimensional textiles : Strand, tow, end, roving, yarn (see definitions)
 - Denier : weight in grams of 9000 m of yarn.
 - Yield=yards/lb
 - TEX=*g*/*km*
 - Area of tow : $A=10^{-5}TEX[g/km]/\rho_f[g/cm^3]$
 - K number : number of fibers in a tow TEX=A_fρ_fK
- 2.4.3. Two dimensional textiles : Fabrics
- Three dimensional textiles. Expensive.

2.4.3. 2D textiles : Fabrics

twill

plain

satin

triaxial

stitched

basket

2.4.3. 2D textiles : Fabrics

Matrices

- 2.6.1. Polyester. Inexpensive.
- 2.6.2. Vinyl Ester. Less expensive than Epoxy.
- 2.6.3. Epoxy. High performance.
- 2.6.4. Phenolic. Fire resistance.
- 2.7. Thermoplastics. Repairable. Difficult to mold.
- Biodegradable matrices.

Manufacturing processes

Typical unit operations

- 1 Fiber placement, along desired orientation.
- 2 Impregnation, of fiber by resin.
- 3 Consolidation, air removal.
- 4 Curing, by cross linking, into a rigid solid.
- **5** Extraction, from the mold.
- 6 Finishing, trimming, etc.

3.1. Hand lay-up

- Fiber placement.
- Impregnation.
- 3 Consolidation.
- 4 Curing.
- 6 Extraction.
- 6 Finishing.

3.2. Prepreg

Watch it on YouTube

 Fiber placement.

- Impregnation.
- 3 Consolidation.
- 4 Curing.
- 5 Extraction.
- 6 Finishing.

3.3. Vacuum bagging

- 1 Fiber
 - placement.
- Impregnation.
- 3 Consolidation.
- 4 Curing.
- 5 Extraction.
- 6 Finishing.

3.4. Autoclave

- Fiber placement.
- Impregnation.
- 3 Consolidation.
- 4 Curing.
- 5 Extraction.
- 6 Finishing.

3.5. Compression molding

1 Fiber

- placement.
- Impregnation.
- 3 Consolidation.
- 4 Curing.
- 5 Extraction.
- 6 Finishing.

3.6. Resin transfer molding (RTM)

Watch it on YouTube

1 Fiber

placement.

- Impregnation.
- 3 Consolidation.

4 Curing.

- 6 Extraction.
- 6 Finishing.

3.7. Vacuum assisted RTM (VARTM)

placement.

a

- Impregnation.
- 3 Consolidation.
- 4 Curing.

Fiber

- 6 Extraction.
- 6 Finishing.

3.8. Pultrusion

Watch it on YouTube

Fiber

placement.

- Impregnation.
- 3 Consolidation.

4 Curing.

5 Extraction.

6 Finishing.

3.9. Filament winding

 Fiber placement.

- Impregnation.
- 3 Consolidation.
- 4 Curing.
- 6 Extraction.
- 6 Finishing.

Advantages/Disadvantages

- 1 Cost.
- 2 Quality.
- O Production rate.